|
@@ -16,7 +16,7 @@ from sklearn2pmml import PMMLPipeline
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
from commom import GeneralException, f_image_crop_white_borders, f_df_to_image, f_display_title, \
|
|
|
- f_display_images_by_side
|
|
|
+ f_display_images_by_side, silent_print, df_print_nolimit
|
|
|
from entitys import DataSplitEntity, OnlineLearningConfigEntity, MetricFucResultEntity
|
|
|
from enums import ResultCodesEnum, ConstantEnum, FileEnum
|
|
|
from init import init
|
|
@@ -164,10 +164,11 @@ class OnlineLearningTrainerXgb:
|
|
|
random_state=self._ol_config.random_state,
|
|
|
)
|
|
|
self._pipeline_optimized.steps[-1] = ("classifier", model_optimized)
|
|
|
- self._pipeline_optimized.fit(train_data, train_data[y_column],
|
|
|
- classifier__verbose=False,
|
|
|
- classifier__xgb_model=model_original.get_booster(),
|
|
|
- )
|
|
|
+ with silent_print():
|
|
|
+ self._pipeline_optimized.fit(train_data, train_data[y_column],
|
|
|
+ classifier__verbose=False,
|
|
|
+ classifier__xgb_model=model_original.get_booster(),
|
|
|
+ )
|
|
|
return ntree
|
|
|
|
|
|
def train(self, ):
|
|
@@ -182,6 +183,13 @@ class OnlineLearningTrainerXgb:
|
|
|
n = n + 1
|
|
|
test_y_prob = self._pipeline_optimized.predict_proba(test_data, ntree_limit=n)[:, 1]
|
|
|
test_y = test_data[y_column]
|
|
|
+
|
|
|
+ # auc_test = roc_auc_score(test_y, test_y_prob)
|
|
|
+ # auc_test = round(auc_test, 4)
|
|
|
+ # df = pd.DataFrame({'label': test_y, 'pred': test_y_prob})
|
|
|
+ # dfkslift = eva_dfkslift(df)
|
|
|
+ # ks_test = round(dfkslift["ks"].max(), 4)
|
|
|
+
|
|
|
perf = sc.perf_eva(test_y, test_y_prob, show_plot=False)
|
|
|
auc_test = perf["AUC"]
|
|
|
ks_test = perf["KS"]
|
|
@@ -210,7 +218,8 @@ class OnlineLearningTrainerXgb:
|
|
|
if self._ol_config.jupyter_print:
|
|
|
from IPython import display
|
|
|
f_display_title(display, "模型优化过程")
|
|
|
- display.display(self._df_param_optimized)
|
|
|
+ with df_print_nolimit():
|
|
|
+ display.display(self._df_param_optimized)
|
|
|
|
|
|
metric_value_dict = {}
|
|
|
|