|
@@ -106,12 +106,12 @@ class ModelLr(ModelBase):
|
|
|
f_df_to_image(test_data_gain, test_data_gain_path)
|
|
|
metric_value_dict["测试集分数分箱"] = MetricFucEntity(table=test_data_gain, image_path=test_data_gain_path)
|
|
|
|
|
|
- # 模型分psi
|
|
|
- model_psi = f_calcu_model_psi(train_data_original, test_data_original)
|
|
|
- model_psi_path = self._train_config.f_get_save_path(f"model_psi.png")
|
|
|
- f_df_to_image(model_psi, model_psi_path)
|
|
|
- metric_value_dict["模型稳定性"] = MetricFucEntity(table=model_psi, value=model_psi["psi"].sum().round(4),
|
|
|
- image_path=model_psi_path)
|
|
|
+ # 模型分psi
|
|
|
+ model_psi = f_calcu_model_psi(train_data_original, test_data_original)
|
|
|
+ model_psi_path = self._train_config.f_get_save_path(f"model_psi.png")
|
|
|
+ f_df_to_image(model_psi, model_psi_path)
|
|
|
+ metric_value_dict["模型稳定性"] = MetricFucEntity(table=model_psi, value=model_psi["psi"].sum().round(4),
|
|
|
+ image_path=model_psi_path)
|
|
|
|
|
|
if jupyter:
|
|
|
from IPython import display
|
|
@@ -119,13 +119,15 @@ class ModelLr(ModelBase):
|
|
|
display.display(metric_value_dict["模型结果"].table)
|
|
|
f_display_images_by_side(metric_value_dict["模型结果"].image_path, display)
|
|
|
# 模型psi
|
|
|
- display.display(metric_value_dict["模型稳定性"].table)
|
|
|
- print(f"模型psi: {metric_value_dict['模型稳定性'].value}")
|
|
|
+ if test_data is not None:
|
|
|
+ display.display(metric_value_dict["模型稳定性"].table)
|
|
|
+ print(f"模型psi: {metric_value_dict['模型稳定性'].value}")
|
|
|
display.display(metric_value_dict["变量系数"].table)
|
|
|
print("-----训练集-分数分箱-----")
|
|
|
display.display(metric_value_dict["训练集分数分箱"].table)
|
|
|
- print("-----测试集-分数分箱-----")
|
|
|
- display.display(metric_value_dict["测试集分数分箱"].table)
|
|
|
+ if test_data is not None:
|
|
|
+ print("-----测试集-分数分箱-----")
|
|
|
+ display.display(metric_value_dict["测试集分数分箱"].table)
|
|
|
# 评分卡
|
|
|
display.display(metric_value_dict["评分卡"].table)
|
|
|
|