|
@@ -128,8 +128,7 @@ class OnlineLearningTrainer:
|
|
|
|
|
|
train_data = self._data.train_data
|
|
|
test_data = self._data.test_data
|
|
|
- data = pd.concat((train_data, test_data))
|
|
|
-
|
|
|
+ data = self._data.data
|
|
|
model = self._model_optimized
|
|
|
if model_type != "新模型":
|
|
|
model = self._model_original
|
|
@@ -150,10 +149,8 @@ class OnlineLearningTrainer:
|
|
|
return MetricFucResultEntity(table=df_auc_ks, image_path=img_path_auc_ks, image_size=5, table_font_size=10)
|
|
|
|
|
|
def _f_get_metric_trend(self, ):
|
|
|
- train_data = self._data.train_data
|
|
|
- test_data = self._data.test_data
|
|
|
y_column = self._ol_config.y_column
|
|
|
- data = pd.concat((train_data, test_data))
|
|
|
+ data = self._data.data
|
|
|
|
|
|
# 建模样本变量趋势
|
|
|
breaks_list = {}
|
|
@@ -187,10 +184,8 @@ class OnlineLearningTrainer:
|
|
|
return MetricFucResultEntity(table=df, image_path=img_path_coef)
|
|
|
|
|
|
def _f_get_metric_gain(self, model_type: str):
|
|
|
- train_data = self._data.train_data
|
|
|
- test_data = self._data.test_data
|
|
|
y_column = self._ol_config.y_column
|
|
|
- data = pd.concat((train_data, test_data))
|
|
|
+ data = self._data.data
|
|
|
|
|
|
model = self._model_optimized
|
|
|
if model_type != "新模型":
|
|
@@ -207,10 +202,8 @@ class OnlineLearningTrainer:
|
|
|
def _f_get_stress_test(self, ):
|
|
|
stress_sample_times = self._ol_config.stress_sample_times
|
|
|
stress_bad_rate_list = self._ol_config.stress_bad_rate_list
|
|
|
- train_data = self._data.train_data
|
|
|
- test_data = self._data.test_data
|
|
|
y_column = self._ol_config.y_column
|
|
|
- data = pd.concat((train_data, test_data))
|
|
|
+ data = self._data.data
|
|
|
score = self.prob(data, self._model_optimized)
|
|
|
score_bin, _ = f_get_model_score_bin(data, score)
|
|
|
df_stress = f_stress_test(score_bin, sample_times=stress_sample_times, bad_rate_list=stress_bad_rate_list,
|