|
@@ -324,7 +324,7 @@ class StrategyWoe(FeatureStrategyBase):
|
|
|
train_woe = sc.woebin_ply(train_data[x_columns], sc_woebin, print_info=False)
|
|
|
corr_df = f_get_corr(train_woe)
|
|
|
corr_dict = corr_df.to_dict()
|
|
|
- filter_corr_overview = "filter_corr\n"
|
|
|
+ filter_corr_overview = ""
|
|
|
filter_corr_detail = {}
|
|
|
# 依次判断每个变量对于其它变量的相关性
|
|
|
for column, corr in corr_dict.items():
|
|
@@ -407,7 +407,7 @@ class StrategyWoe(FeatureStrategyBase):
|
|
|
bin_info_filtered: Dict[str, BinInfo] = {}
|
|
|
# 数值型变量多种分箱方式的中间结果
|
|
|
homo_bin_info_numeric_set: Dict[str, HomologousBinInfo] = {}
|
|
|
- filter_numeric_overview = "filter_numeric\n"
|
|
|
+ filter_numeric_overview = ""
|
|
|
filter_numeric_detail = []
|
|
|
for x_column in tqdm(x_columns):
|
|
|
if is_numeric_dtype(data.train_data[x_column]):
|
|
@@ -556,7 +556,7 @@ class StrategyWoe(FeatureStrategyBase):
|
|
|
print(notes)
|
|
|
print(filter.get("overview"))
|
|
|
detail = filter.get("detail")
|
|
|
- if detail is not None:
|
|
|
+ if detail is not None and self.ml_config.bin_detail_print:
|
|
|
detail_print(detail)
|
|
|
|
|
|
train_data = data.train_data
|