# -*- coding: utf-8 -*- """ @author: yq @time: 2024/11/1 @desc: """ import pandas as pd from commom import f_format_float class DataFeatureEntity(): """ 数据特征准备完毕 """ def __init__(self, data_x: pd.DataFrame, data_y: pd.Series): self._data_x = data_x self._data_y = data_y @property def x_columns(self): return self._data_x.columns.tolist() @property def data_x(self): return self._data_x @property def data_y(self): return self._data_y def get_odds0(self): train_good_len = len(self._data_y[self._data_y == 0]) train_bad_len = len(self._data_y[self._data_y == 1]) odds0 = train_bad_len / train_good_len return odds0 class DataSplitEntity(): """ 初始数据训练集测试集划分 """ def __init__(self, train_data: pd.DataFrame, test_data: pd.DataFrame): self._train_data = train_data self._test_data = test_data @property def train_data(self): return self._train_data @property def test_data(self): return self._test_data def get_distribution(self, y_column) -> pd.DataFrame: df = pd.DataFrame() train_data_len = len(self._train_data) train_bad_len = len(self._train_data[self._train_data[y_column] == 1]) train_bad_rate = f"{f_format_float(train_bad_len / train_data_len * 100, 2)}%" test_data_len = len(self._test_data) test_bad_len = len(self._test_data[self._test_data[y_column] == 1]) test_bad_rate = f"{f_format_float(test_bad_len / test_data_len * 100, 2)}%" total = train_data_len + test_data_len bad_total = train_bad_len + test_bad_len bad_rate = f"{f_format_float(bad_total / total * 100, 2)}%" df["样本"] = ["训练集", "测试集", "合计"] df["样本数"] = [train_data_len, test_data_len, total] df["样本占比"] = [f"{f_format_float(train_data_len / total * 100, 2)}%", f"{f_format_float(test_data_len / total * 100, 2)}%", "100%"] df["坏样本数"] = [train_bad_len, test_bad_len, bad_total] df["坏样本比例"] = [train_bad_rate, test_bad_rate, bad_rate] return df if __name__ == "__main__": pass