# -*- coding:utf-8 -*- """ @author: yq @time: 2024/1/2 @desc: iv值及单调性筛选类 """ import json import os.path from itertools import combinations_with_replacement from typing import Dict, Optional, Union import matplotlib.pyplot as plt import numpy as np import pandas as pd import scorecardpy as sc import seaborn as sns from pandas.core.dtypes.common import is_numeric_dtype from tqdm import tqdm from commom import f_display_images_by_side, NumpyEncoder, GeneralException, f_df_to_image, f_display_title from entitys import DataSplitEntity, MetricFucResultEntity from enums import ContextEnum, ResultCodesEnum from feature.feature_strategy_base import FeatureStrategyBase from init import context from .entity import BinInfo, HomologousBinInfo from .utils import f_monto_shift, f_get_corr, f_get_vif, f_format_bin, f_trend_shift, f_get_psi class StrategyWoe(FeatureStrategyBase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # woe编码需要的分箱信息,复用scorecardpy的格式 self.sc_woebin = None def _f_get_img_corr(self, train_woe) -> Union[str, None]: if len(train_woe.columns.to_list()) <= 1: return None train_corr = f_get_corr(train_woe) plt.figure(figsize=(12, 12)) sns.heatmap(train_corr, vmax=1, square=True, cmap='RdBu', annot=True) plt.title('Variables Correlation', fontsize=15) plt.yticks(rotation=0) plt.xticks(rotation=90) img_path = self.ml_config.f_get_save_path(f"corr.png") plt.savefig(img_path) return img_path def _f_get_img_trend(self, sc_woebin, x_columns, prefix): imgs_path = [] for k in x_columns: df_bin = sc_woebin[k] # df_bin["bin"] = df_bin["bin"].apply(lambda x: re.sub(r"(\d+\.\d+)", # lambda m: "{:.2f}".format(float(m.group(0))), x)) sc.woebin_plot(df_bin) path = self.ml_config.f_get_save_path(f"{prefix}_{k}.png") plt.savefig(path) imgs_path.append(path) return imgs_path def _f_get_sc_woebin(self, data: pd.DataFrame, bin_info_dict: Dict[str, BinInfo]) -> Dict[str, pd.DataFrame]: y_column = self.ml_config.y_column special_values = self.ml_config.special_values x_columns = list(bin_info_dict.keys()) breaks_list = {column: bin_info.points for column, bin_info in bin_info_dict.items()} sc_woebin = sc.woebin(data[x_columns + [y_column]], y=y_column, breaks_list=breaks_list, special_values=special_values, print_info=False) return sc_woebin def _handle_numeric(self, data: DataSplitEntity, x_column: str) -> HomologousBinInfo: # 贪婪搜索【训练集】及【测试集】加起来【iv】值最高的且【单调】的分箱 def _n0(x): return sum(x == 0) def _n1(x): return sum(x == 1) def _get_bins_sv(df, x_column): y_column = self.ml_config.y_column special_values = self.ml_config.get_special_values(x_column) # special_values_bins bins_sv = pd.DataFrame() for special in special_values: dtm = df[df[x_column] == special] if len(dtm) != 0: dtm['bin'] = [str(special)] * len(dtm) bin = dtm.groupby(['bin'], group_keys=False)[y_column].agg([_n0, _n1]) \ .reset_index().rename(columns={'_n0': 'good', '_n1': 'bad'}) bin['is_special_values'] = [True] * len(bin) bins_sv = pd.concat((bins_sv, bin)) return bins_sv def _get_bins_nsv(df, x_column, breaks_list): # no_special_values_bins def _left_value(bin: str): if "," not in bin: return float(bin) left = bin.split(",")[0] return float(left[1:]) y_column = self.ml_config.y_column dtm = pd.DataFrame({'y': df[y_column], 'value': df[x_column]}) bstbrks = [-np.inf] + breaks_list + [np.inf] labels = ['[{},{})'.format(bstbrks[i], bstbrks[i + 1]) for i in range(len(bstbrks) - 1)] dtm.loc[:, 'bin'] = pd.cut(dtm['value'], bstbrks, right=False, labels=labels) dtm['bin'] = dtm['bin'].astype(str) bins = dtm.groupby(['bin'], group_keys=False)['y'].agg([_n0, _n1]) \ .reset_index().rename(columns={'_n0': 'good', '_n1': 'bad'}) bins['is_special_values'] = [False] * len(bins) bins["ordered"] = bins['bin'].apply(_left_value) # 排序防止计算变量分箱后的单调性错位 bins = bins.sort_values(by=["ordered"], ascending=[True]) return bins def _get_badprobs(bins): bins['count'] = bins['good'] + bins['bad'] bins['badprob'] = bins['bad'] / bins['count'] return bins['badprob'].values.tolist() def _get_iv(bins): infovalue = pd.DataFrame({'good': bins['good'], 'bad': bins['bad']}) \ .replace(0, 0.9) \ .assign(DistrBad=lambda x: x.bad / sum(x.bad), DistrGood=lambda x: x.good / sum(x.good)) \ .assign(iv=lambda x: (x.DistrBad - x.DistrGood) * np.log(x.DistrBad / x.DistrGood)) \ .iv bins['bin_iv'] = infovalue bins['total_iv'] = bins['bin_iv'].sum() iv = bins['total_iv'].values[0] return iv.round(3) def _get_points(data_ascending, column): def _sampling(raw_list: list, num: int): # 按步长采样 return raw_list[::int(len(raw_list) / num)] def _distribute(interval, bin_num): parts = int(1 / interval) # 穷举分布,隔板法 total_ways = combinations_with_replacement(range(parts + bin_num - 1), bin_num - 1) distributions = [] # 遍历所有可能的隔板位置 for combo in total_ways: # 根据隔板位置分配球 distribution = [0] * bin_num start = 0 for i, divider in enumerate(combo): distribution[i] = divider - start + 1 start = divider + 1 distribution[-1] = parts - start # 最后一个箱子的球数 # 确保每个箱子至少有一个球 if all(x > 0 for x in distribution): distributions.append(distribution) return distributions interval = self.ml_config.bin_search_interval bin_sample_rate = self.ml_config.bin_sample_rate format_bin = self.ml_config.format_bin data_x = data_ascending[column] data_x_describe = data_x.describe(percentiles=[0.1, 0.9]) data_x_max = data_x.max() # 计算 2 - 5 箱的情况 distributions_list = [] for bin_num in list(range(2, 6)): distributions = _distribute(interval, bin_num) # 4箱及以上得采样,不然耗时太久 sample_num = 1000 * bin_sample_rate if bin_sample_rate <= 0.15: sample_num *= 2 if bin_num == 5: sample_num = 4000 * bin_sample_rate if bin_num in (4, 5) and len(distributions) >= sample_num: distributions = _sampling(distributions, sample_num) distributions_list.extend(distributions) points_list = [] for distributions in distributions_list: points = [] point_percentile = [sum(distributions[0:idx + 1]) * interval for idx, _ in enumerate(distributions[0:-1])] for percentile in point_percentile: point = data_x.iloc[int(len(data_x) * percentile)] point = float(point) if format_bin: point = f_format_bin(data_x_describe, point) point = round(point, 2) if point == 0: continue # 排除粗分箱后越界的情况 if point not in points and point < data_x_max: points.append(point) if points not in points_list and len(points) != 0: points_list.append(points) return points_list special_values = self.ml_config.get_special_values(x_column) breaks_list = self.ml_config.get_breaks_list(x_column) iv_threshold = self.ml_config.iv_threshold psi_threshold = self.ml_config.psi_threshold monto_shift_threshold = self.ml_config.monto_shift_threshold trend_shift_threshold = self.ml_config.trend_shift_threshold train_data = data.train_data test_data = data.test_data train_data_ascending_nsv = train_data[~train_data[x_column].isin(special_values)] \ .sort_values(by=x_column, ascending=True) test_data_ascending_nsv = test_data[~test_data[x_column].isin(special_values)] \ .sort_values(by=x_column, ascending=True) train_bins_sv = _get_bins_sv(train_data, x_column) test_bins_sv = _get_bins_sv(test_data, x_column) # 获取每种分箱的信息 # 构造数据切分点 is_auto_bins = 1 if len(breaks_list) != 0: points_list_nsv = [breaks_list] is_auto_bins = 0 else: points_list_nsv = _get_points(train_data_ascending_nsv, x_column) homo_bin_info = HomologousBinInfo(x_column, is_auto_bins, self.ml_config.is_include(x_column)) # 计算iv psi monto_shift等 for points in points_list_nsv: bin_info = BinInfo() bin_info.x_column = x_column bin_info.bin_num = len(points) + 1 bin_info.points = points bin_info.is_auto_bins = is_auto_bins # 变量iv,与special_values合并计算iv train_bins_nsv = _get_bins_nsv(train_data_ascending_nsv, x_column, points) train_bins = pd.concat((train_bins_nsv, train_bins_sv)) train_iv = _get_iv(train_bins) test_bins_nsv = _get_bins_nsv(test_data_ascending_nsv, x_column, points) test_bins = pd.concat((test_bins_nsv, test_bins_sv)) test_iv = _get_iv(test_bins) bin_info.train_iv = train_iv bin_info.test_iv = test_iv bin_info.iv = train_iv + test_iv bin_info.is_qualified_iv_train = 1 if train_iv > iv_threshold else 0 # 变量单调性变化次数 train_badprobs_nsv = _get_badprobs(train_bins_nsv) monto_shift_train_nsv = f_monto_shift(train_badprobs_nsv) bin_info.monto_shift_nsv = monto_shift_train_nsv bin_info.is_qualified_monto_train_nsv = 0 if monto_shift_train_nsv > monto_shift_threshold else 1 # 变量趋势一致性 test_badprobs_nsv = _get_badprobs(test_bins_nsv) trend_shift_nsv = f_trend_shift(train_badprobs_nsv, test_badprobs_nsv) bin_info.trend_shift_nsv = trend_shift_nsv bin_info.is_qualified_trend_nsv = 0 if trend_shift_nsv > trend_shift_threshold else 1 # 变量psi psi = f_get_psi(train_bins, test_bins) bin_info.psi = psi bin_info.is_qualified_psi = 1 if psi < psi_threshold else 0 homo_bin_info.add(bin_info) return homo_bin_info def _f_fast_filter(self, data: DataSplitEntity) -> Dict[str, BinInfo]: # 通过iv值粗筛变量 train_data = data.train_data test_data = data.test_data y_column = self.ml_config.y_column x_columns = self.ml_config.x_columns columns_exclude = self.ml_config.columns_exclude special_values = self.ml_config.special_values breaks_list = self.ml_config.breaks_list.copy() iv_threshold = self.ml_config.iv_threshold psi_threshold = self.ml_config.psi_threshold if len(x_columns) == 0: x_columns = train_data.columns.tolist() if y_column in x_columns: x_columns.remove(y_column) for column in columns_exclude: if column in x_columns: x_columns.remove(column) bins_train = sc.woebin(train_data[x_columns + [y_column]], y=y_column, bin_num_limit=5, special_values=special_values, breaks_list=breaks_list, print_info=False) for column, bin in bins_train.items(): breaks_list[column] = list(bin[bin["is_special_values"]==False]['breaks']) bins_test = sc.woebin(test_data[x_columns + [y_column]], y=y_column, special_values=special_values, breaks_list=breaks_list, print_info=False) bin_info_fast: Dict[str, BinInfo] = {} filter_fast_overview = "" for column, bin_train in bins_train.items(): train_iv = bin_train['total_iv'][0].round(3) if train_iv <= iv_threshold and not self.ml_config.is_include(column): filter_fast_overview = f"{filter_fast_overview}{column} 因为train_iv【{train_iv}】小于阈值被剔除\n" continue bin_test = bins_test[column] test_iv = bin_test['total_iv'][0].round(3) iv = round(train_iv + test_iv, 3) psi = f_get_psi(bin_train, bin_test) # if psi >= psi_threshold and not self.ml_config.is_include(column): # filter_fast_overview = f"{filter_fast_overview}{column} 因为psi【{psi}】大于阈值被剔除\n" # continue bin_info_fast[column] = BinInfo.ofConvertByDict( {"x_column": column, "train_iv": train_iv, "iv": iv, "psi": psi, "points": breaks_list[column]} ) context.set_filter_info(ContextEnum.FILTER_FAST, f"筛选前变量数量:{len(x_columns)}\n{x_columns}\n" f"快速筛选剔除变量数量:{len(x_columns) - len(bin_info_fast)}\n{filter_fast_overview}") return bin_info_fast def _f_corr_filter(self, data: DataSplitEntity, bin_info_dict: Dict[str, BinInfo]) -> Dict[str, BinInfo]: # 相关性剔除变量 corr_threshold = self.ml_config.corr_threshold train_data = data.train_data x_columns = list(bin_info_dict.keys()) sc_woebin = self._f_get_sc_woebin(train_data, bin_info_dict) train_woe = sc.woebin_ply(train_data[x_columns], sc_woebin, print_info=False) corr_df = f_get_corr(train_woe) corr_dict = corr_df.to_dict() filter_corr_overview = "filter_corr\n" filter_corr_detail = {} # 依次判断每个变量对于其它变量的相关性 for column, corr in corr_dict.items(): column = column.replace("_woe", "") column_remove = [] overview = f"{column}: " if column not in x_columns: continue for challenger_column, challenger_corr in corr.items(): challenger_corr = round(challenger_corr, 3) challenger_column = challenger_column.replace("_woe", "") if challenger_corr < corr_threshold or column == challenger_column \ or challenger_column not in x_columns: continue # 相关性大于阈值的情况,选择iv值大的 iv = bin_info_dict[column].iv challenger_iv = bin_info_dict[challenger_column].iv if iv > challenger_iv: if not self.ml_config.is_include(challenger_column): column_remove.append(challenger_column) overview = f"{overview}【{challenger_column}_iv{challenger_iv}_corr{challenger_corr}】 " else: # 自己被剔除的情况下不再记录 column_remove = [] overview = "" break # 剔除与自己相关的变量 for c in column_remove: if c in x_columns: x_columns.remove(c) if len(column_remove) != 0: filter_corr_overview = f"{filter_corr_overview}{overview}\n" filter_corr_detail[column] = column_remove for column in list(bin_info_dict.keys()): if column not in x_columns: bin_info_dict.pop(column) context.set_filter_info(ContextEnum.FILTER_CORR, filter_corr_overview, filter_corr_detail) return bin_info_dict def _f_vif_filter(self, data: DataSplitEntity, bin_info_dict: Dict[str, BinInfo]) -> Dict[str, BinInfo]: vif_threshold = self.ml_config.vif_threshold train_data = data.train_data x_columns = list(bin_info_dict.keys()) sc_woebin = self._f_get_sc_woebin(train_data, bin_info_dict) train_woe = sc.woebin_ply(train_data[x_columns], sc_woebin, print_info=False) vif_df = f_get_vif(train_woe) if vif_df is None: return bin_info_dict filter_vif_overview = "" filter_vif_detail = [] for _, row in vif_df.iterrows(): column = row["变量"] vif = row["vif"] bin_info = bin_info_dict[column] bin_info.vif = vif bin_info_dict[column] = bin_info if vif < vif_threshold or self.ml_config.is_include(column): continue filter_vif_overview = f"{filter_vif_overview}{column} 因为vif【{vif}】大于阈值被剔除\n" filter_vif_detail.append(column) bin_info_dict.pop(column) context.set_filter_info(ContextEnum.FILTER_VIF, filter_vif_overview, filter_vif_detail) return bin_info_dict def post_filter(self, data: DataSplitEntity, bin_info_dict: Dict[str, BinInfo]): # 变量之间进行比较的过滤器 max_feature_num = self.ml_config.max_feature_num bin_info_filtered = self._f_corr_filter(data, bin_info_dict) bin_info_filtered = self._f_vif_filter(data, bin_info_filtered) bin_info_filtered = BinInfo.ivTopN(bin_info_filtered, max_feature_num) self.sc_woebin = self._f_get_sc_woebin(data.train_data, bin_info_filtered) context.set(ContextEnum.BIN_INFO_FILTERED, bin_info_filtered) context.set(ContextEnum.WOEBIN, self.sc_woebin) def feature_search(self, data: DataSplitEntity, *args, **kwargs): # 粗筛 bin_info_fast = self._f_fast_filter(data) x_columns = list(bin_info_fast.keys()) bin_info_filtered: Dict[str, BinInfo] = {} # 数值型变量多种分箱方式的中间结果 homo_bin_info_numeric_set: Dict[str, HomologousBinInfo] = {} filter_numeric_overview = "filter_numeric\n" filter_numeric_detail = [] for x_column in tqdm(x_columns): if is_numeric_dtype(data.train_data[x_column]): # 数值型变量筛选 homo_bin_info_numeric: HomologousBinInfo = self._handle_numeric(data, x_column) if homo_bin_info_numeric.is_auto_bins: homo_bin_info_numeric_set[x_column] = homo_bin_info_numeric # iv psi 变量单调性 变量趋势一致性 筛选 bin_info: Optional[BinInfo] = homo_bin_info_numeric.filter() if bin_info is not None: bin_info_filtered[x_column] = bin_info else: # 不满足要求被剔除 filter_numeric_overview = f"{filter_numeric_overview}{x_column} {homo_bin_info_numeric.drop_reason()}\n" filter_numeric_detail.append(x_column) else: # 字符型暂时用scorecardpy来处理 bin_info_filtered[x_column] = bin_info_fast[x_column] self.post_filter(data, bin_info_filtered) context.set(ContextEnum.HOMO_BIN_INFO_NUMERIC_SET, homo_bin_info_numeric_set) context.set_filter_info(ContextEnum.FILTER_NUMERIC, filter_numeric_overview, filter_numeric_detail) def feature_save(self, *args, **kwargs): if self.sc_woebin is None: GeneralException(ResultCodesEnum.NOT_FOUND, message=f"feature不存在") df_woebin = pd.concat(self.sc_woebin.values()) path = self.ml_config.f_get_save_path(f"feature.csv") df_woebin.to_csv(path) print(f"feature save to【{path}】success. ") def feature_load(self, path: str, *args, **kwargs): if os.path.isdir(path): path = os.path.join(path, "feature.csv") if not os.path.isfile(path) or "feature.csv" not in path: raise GeneralException(ResultCodesEnum.NOT_FOUND, message=f"特征信息【feature.csv】不存在") df_woebin = pd.read_csv(path) variables = df_woebin["variable"].unique().tolist() self.sc_woebin = {} for variable in variables: self.sc_woebin[variable] = df_woebin[df_woebin["variable"] == variable] print(f"feature load from【{path}】success.") def feature_generate(self, data: pd.DataFrame, *args, **kwargs) -> pd.DataFrame: x_columns = list(self.sc_woebin.keys()) # 排个序,防止因为顺序原因导致的可能的bug x_columns.sort() data_woe = sc.woebin_ply(data[x_columns], self.sc_woebin, print_info=False) return data_woe def feature_report(self, data: DataSplitEntity, *args, **kwargs) -> Dict[str, MetricFucResultEntity]: y_column = self.ml_config.y_column columns_anns = self.ml_config.columns_anns x_columns = list(self.sc_woebin.keys()) train_data = data.train_data test_data = data.test_data # 跨模块调用中间结果,所以从上下文里取 bin_info_filtered: Dict[str, BinInfo] = context.get(ContextEnum.BIN_INFO_FILTERED) metric_value_dict = {} # 样本分布 metric_value_dict["样本分布"] = MetricFucResultEntity(table=data.get_distribution(y_column), table_font_size=10, table_cell_width=3) # 变量iv、psi、vif df_iv_psi_vif = pd.DataFrame() train_iv = [bin_info_filtered[column].train_iv for column in x_columns] psi = [bin_info_filtered[column].psi for column in x_columns] vif = [bin_info_filtered[column].vif for column in x_columns] anns = [columns_anns.get(column, "-") for column in x_columns] df_iv_psi_vif["变量"] = x_columns df_iv_psi_vif["iv"] = train_iv df_iv_psi_vif["psi"] = psi df_iv_psi_vif["vif"] = vif df_iv_psi_vif["释义"] = anns df_iv_psi_vif.sort_values(by=["iv"], ascending=[False], inplace=True) img_path_iv = self.ml_config.f_get_save_path(f"iv.png") f_df_to_image(df_iv_psi_vif, img_path_iv) metric_value_dict["变量iv"] = MetricFucResultEntity(table=df_iv_psi_vif, image_path=img_path_iv) # 变量相关性 sc_woebin_train = self._f_get_sc_woebin(train_data, bin_info_filtered) train_woe = sc.woebin_ply(train_data[x_columns], sc_woebin_train, print_info=False) img_path_corr = self._f_get_img_corr(train_woe) metric_value_dict["变量相关性"] = MetricFucResultEntity(image_path=img_path_corr) # 变量趋势-训练集 imgs_path_trend_train = self._f_get_img_trend(sc_woebin_train, x_columns, "train") metric_value_dict["变量趋势-训练集"] = MetricFucResultEntity(image_path=imgs_path_trend_train, image_size=4) # 变量趋势-测试集 sc_woebin_test = self._f_get_sc_woebin(test_data, bin_info_filtered) imgs_path_trend_test = self._f_get_img_trend(sc_woebin_test, x_columns, "test") metric_value_dict["变量趋势-测试集"] = MetricFucResultEntity(image_path=imgs_path_trend_test, image_size=4) # context.set(ContextEnum.METRIC_FEATURE.value, metric_value_dict) if self.ml_config.jupyter_print: self.jupyter_print(data, metric_value_dict) return metric_value_dict def jupyter_print(self, data: DataSplitEntity, metric_value_dict=Dict[str, MetricFucResultEntity]): from IPython import display def detail_print(detail): if isinstance(detail, str): detail = [detail] if isinstance(detail, list): for column in detail: homo_bin_info_numeric = homo_bin_info_numeric_set.get(column) if homo_bin_info_numeric is None: continue bins_info = homo_bin_info_numeric.get_best_bins() print(f"-----【{column}】不同分箱数下变量的推荐切分点-----") imgs_path_trend_train = [] imgs_path_trend_test = [] for bin_info in bins_info: print(json.dumps(bin_info.points, ensure_ascii=False, cls=NumpyEncoder)) breaks_list = [str(i) for i in bin_info.points] sc_woebin_train = self._f_get_sc_woebin(train_data, {column: bin_info}) image_path = self._f_get_img_trend(sc_woebin_train, [column], f"train_{column}_{'_'.join(breaks_list)}") imgs_path_trend_train.append(image_path[0]) sc_woebin_test = self._f_get_sc_woebin(test_data, {column: bin_info}) image_path = self._f_get_img_trend(sc_woebin_test, [column], f"test_{column}_{'_'.join(breaks_list)}") imgs_path_trend_test.append(image_path[0]) f_display_images_by_side(display, imgs_path_trend_train, title=f"训练集", image_path_list2=imgs_path_trend_test, title2="测试集") if isinstance(detail, dict): for column, challenger_columns in detail.items(): print(f"-----相关性筛选保留的【{column}】-----") detail_print(column) detail_print(challenger_columns) train_data = data.train_data test_data = data.test_data bin_info_filtered: Dict[str, BinInfo] = context.get(ContextEnum.BIN_INFO_FILTERED) homo_bin_info_numeric_set: Dict[str, HomologousBinInfo] = context.get(ContextEnum.HOMO_BIN_INFO_NUMERIC_SET) filter_fast = context.get(ContextEnum.FILTER_FAST) filter_numeric = context.get(ContextEnum.FILTER_NUMERIC) filter_corr = context.get(ContextEnum.FILTER_CORR) filter_vif = context.get(ContextEnum.FILTER_VIF) filter_ivtop = context.get(ContextEnum.FILTER_IVTOP) f_display_title(display, "样本分布") display.display(metric_value_dict["样本分布"].table) # 打印变量iv f_display_title(display, "变量iv") display.display(metric_value_dict["变量iv"].table) # 打印变量相关性 f_display_images_by_side(display, metric_value_dict["变量相关性"].image_path, width=800) # 打印变量趋势 f_display_title(display, "变量趋势") imgs_path_trend_train = metric_value_dict["变量趋势-训练集"].image_path imgs_path_trend_test = metric_value_dict.get("变量趋势-测试集").image_path f_display_images_by_side(display, imgs_path_trend_train, title="训练集", image_path_list2=imgs_path_trend_test, title2="测试集") # 打印breaks_list breaks_list = {column: bin_info.points for column, bin_info in bin_info_filtered.items()} print("变量切分点:") print(json.dumps(breaks_list, ensure_ascii=False, indent=2, cls=NumpyEncoder)) print("选中变量不同分箱数下变量的推荐切分点:") detail_print(list(bin_info_filtered.keys())) # 打印fast_filter筛选情况 f_display_title(display, "快速筛选过程") print(filter_fast.get("overview")) # 打印filter_numeric筛选情况 f_display_title(display, "数值变量筛选过程") print(filter_numeric.get("overview")) detail = filter_numeric.get("detail") detail_print(detail) # 打印filter_corr筛选情况 f_display_title(display, "相关性筛选过程") print(filter_corr.get("overview")) detail = filter_corr.get("detail") detail_print(detail) # 打印filter_vif筛选情况 f_display_title(display, "vif筛选过程") print(filter_vif.get("overview")) detail = filter_vif.get("detail") detail_print(detail) # 打印ivtop筛选情况 f_display_title(display, "ivtop筛选过程") print(filter_ivtop.get("overview")) detail = filter_ivtop.get("detail") detail_print(detail)