# -*- coding: utf-8 -*-
"""
@author: yq
@time: 2024/12/4
@desc:
"""
import gradio as gr
from init import init
from webui import f_project_is_exist, f_data_upload, engine, f_train, f_download_report
init()
input_elems = set()
elem_dict = {}
with gr.Blocks() as demo:
gr.HTML('
Easy-ML
')
gr.HTML('快速建模工具
')
gr.State([])
with gr.Tabs():
with gr.TabItem("数据"):
with gr.Row():
project_name = gr.Textbox(label="项目名称", placeholder="请输入不重复的项目名称",
info="项目名称将会被作为缓存目录名称,如果重复会导致结果被覆盖")
with gr.Row():
file_data = gr.File(label="建模数据", file_types=[".csv", ".xlsx"])
with gr.Row():
data_upload = gr.Dataframe(visible=False, label="当前上传数据", max_height=300)
with gr.Row():
data_insight = gr.Dataframe(visible=False, label="数据探查", max_height=600, wrap=True)
input_elems.update(
{project_name, file_data, data_upload, data_insight})
elem_dict.update(dict(
project_name=project_name,
file_data=file_data,
data_upload=data_upload,
data_insight=data_insight
))
with gr.TabItem("训练"):
with gr.Row():
with gr.Column():
with gr.Row():
model_type = gr.Dropdown(["lr"], value="lr", label="模型")
search_strategy = gr.Dropdown(["iv"], value="iv", label="特征搜索策略")
with gr.Row():
y_column = gr.Dropdown(label="Y标签列", interactive=True, info="其值应该是0或者1")
x_columns = gr.Dropdown(label="X特征列", multiselect=True, interactive=True,
info="不应包含Y特征列,不选择则使用全部特征")
with gr.Row():
max_feature_num = gr.Number(value=10, label="建模最多保留特征数", info="保留最重要的N个特征",
interactive=True)
bin_sample_rate = gr.Slider(0.05, 1, value=0.1, label="分箱组合采样率", info="对2-5箱所有分箱组合进行采样",
step=0.01, interactive=True)
special_values = gr.Textbox(label="特殊值", placeholder="可以是dict list str格式",
info="分箱时特殊值会单独一个分箱")
with gr.Row():
test_split_strategy = gr.Dropdown(["随机"], value="随机", label="测试集划分方式")
test_split_rate = gr.Slider(0, 0.5, value=0.3, label="测试集划分比例", step=0.05, interactive=True)
train_button = gr.Button("开始训练", variant="primary", elem_id="train_button")
input_elems.update(
{model_type, search_strategy, y_column, x_columns, max_feature_num, bin_sample_rate,
special_values, test_split_strategy, test_split_rate, train_button
})
elem_dict.update(dict(
model_type=model_type,
feature_search_strategy=search_strategy,
y_column=y_column,
x_columns=x_columns,
max_feature_num=max_feature_num,
bin_sample_rate=bin_sample_rate,
special_values=special_values,
test_split_strategy=test_split_strategy,
test_split_rate=test_split_rate,
train_button=train_button))
with gr.Column():
with gr.Row():
train_progress = gr.Textbox(label="训练进度", scale=4)
download_report = gr.DownloadButton(label="报告下载", variant="primary", elem_id="download_report",
visible=False, scale=1)
file_report = gr.File(visible=False)
with gr.Row():
auc_df = gr.Dataframe(visible=False, label="auc ks", max_height=300, interactive=False)
with gr.Row():
gallery_auc = gr.Gallery(label="auc ks", columns=[1], rows=[2], object_fit="contain",
height="auto", visible=False, interactive=False)
input_elems.update(
{train_progress, download_report, file_report, auc_df, gallery_auc})
elem_dict.update(dict(
train_progress=train_progress,
download_report=download_report,
file_report=file_report,
auc_df=auc_df,
gallery_auc=gallery_auc))
engine.add_elems(elem_dict)
project_name.change(fn=f_project_is_exist, inputs=input_elems)
file_data.upload(fn=f_data_upload, inputs=input_elems, outputs=[data_upload, data_insight, y_column,
x_columns])
train_button.click(fn=f_train, inputs=input_elems,
outputs=[train_progress, auc_df, gallery_auc, download_report])
download_report.click(fn=f_download_report, inputs=input_elems, outputs=download_report)
demo.queue(default_concurrency_limit=5)
demo.launch(share=False, show_error=True, server_name="0.0.0.0", server_port=18066)
if __name__ == "__main__":
pass