pipeline.py 3.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100
  1. # -*- coding: utf-8 -*-
  2. """
  3. @author: yq
  4. @time: 2024/11/1
  5. @desc: 模型训练管道
  6. """
  7. from typing import List
  8. import pandas as pd
  9. from entitys import DataSplitEntity, MlConfigEntity, DataFeatureEntity
  10. from feature import FeatureStrategyFactory, FeatureStrategyBase
  11. from init import init
  12. from model import ModelBase, ModelFactory, f_add_rules, f_get_model_score_bin, f_calcu_model_psi
  13. from monitor import ReportWord
  14. init()
  15. class Pipeline():
  16. def __init__(self, ml_config: MlConfigEntity = None, data: DataSplitEntity = None, *args, **kwargs):
  17. if ml_config is not None:
  18. self._ml_config = ml_config
  19. else:
  20. self._ml_config = MlConfigEntity(*args, **kwargs)
  21. feature_strategy_clazz = FeatureStrategyFactory.get_strategy(self._ml_config.feature_strategy)
  22. self._feature_strategy: FeatureStrategyBase = feature_strategy_clazz(self._ml_config)
  23. model_clazz = ModelFactory.get_model(self._ml_config.model_type)
  24. self._model: ModelBase = model_clazz(self._ml_config)
  25. self._data = data
  26. def train(self, ):
  27. # 特征筛选
  28. self._feature_strategy.feature_search(self._data)
  29. metric_feature = self._feature_strategy.feature_report(self._data)
  30. # 生成训练数据
  31. train_data = self._feature_strategy.feature_generate(self._data.train_data)
  32. train_data = DataFeatureEntity(data_x=train_data, data_y=self._data.train_data[self._ml_config.y_column])
  33. test_data = self._feature_strategy.feature_generate(self._data.test_data)
  34. test_data = DataFeatureEntity(data_x=test_data, data_y=self._data.test_data[self._ml_config.y_column])
  35. self._model.train(train_data, test_data)
  36. metric_model = self._model.train_report(self._data)
  37. self.metric_value_dict = {**metric_feature, **metric_model}
  38. def prob(self, data: pd.DataFrame):
  39. feature = self._feature_strategy.feature_generate(data)
  40. prob = self._model.prob(feature)
  41. return prob
  42. def score(self, data: pd.DataFrame):
  43. return self._model.score(data)
  44. def score_rule(self, data: pd.DataFrame):
  45. return self._model.score_rule(data)
  46. def psi(self, x1: pd.DataFrame, x2: pd.DataFrame, points: List[float] = None) -> pd.DataFrame:
  47. if len(self._ml_config.rules) != 0:
  48. y1 = self.score_rule(x1)
  49. y2 = self.score_rule(x2)
  50. else:
  51. y1 = self.score(x1)
  52. y2 = self.score(x2)
  53. x1_score_bin, score_bins = f_get_model_score_bin(x1, y1, points)
  54. x2_score_bin, _ = f_get_model_score_bin(x2, y2, score_bins)
  55. model_psi = f_calcu_model_psi(x1_score_bin, x2_score_bin)
  56. print(f"模型psi: {model_psi['psi'].sum()}")
  57. return model_psi
  58. def report(self, ):
  59. save_path = self._ml_config.f_get_save_path("模型报告.docx")
  60. ReportWord.generate_report(self.metric_value_dict, self._model.get_report_template_path(), save_path=save_path)
  61. print(f"模型报告文件储存路径:{save_path}")
  62. def save(self):
  63. self._ml_config.config_save()
  64. self._feature_strategy.feature_save()
  65. self._model.model_save()
  66. @staticmethod
  67. def load(path: str):
  68. ml_config = MlConfigEntity.from_config(path)
  69. pipeline = Pipeline(ml_config=ml_config)
  70. pipeline._feature_strategy.feature_load(path)
  71. pipeline._model.model_load(path)
  72. return pipeline
  73. def variable_analyse(self, column: str, format_bin=None):
  74. self._feature_strategy.variable_analyse(self._data, column, format_bin)
  75. def rules_test(self, ):
  76. rules = self._ml_config.rules
  77. df = self._data.train_data.copy()
  78. df["SCORE"] = [0] * len(df)
  79. f_add_rules(df, rules)
  80. if __name__ == "__main__":
  81. pass