app.py 4.2 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192
  1. # -*- coding: utf-8 -*-
  2. """
  3. @author: yq
  4. @time: 2024/12/4
  5. @desc:
  6. """
  7. import gradio as gr
  8. from init import init
  9. from webui import f_project_is_exist, f_data_upload, engine, f_train
  10. init()
  11. input_elems = set()
  12. elem_dict = {}
  13. with gr.Blocks() as demo:
  14. gr.HTML('<h1 ><center><font size="5">Easy-ML</font></center></h1>')
  15. gr.HTML('<h2 ><center><font size="2">快速建模工具</font></center></h2>')
  16. with gr.Tabs():
  17. with gr.TabItem("数据"):
  18. with gr.Row():
  19. project_name = gr.Textbox(label="项目名称", placeholder="请输入不重复的项目名称",
  20. info="项目名称将会被作为缓存目录名称,如果重复会导致结果被覆盖")
  21. with gr.Row():
  22. file_data = gr.File(label="建模数据")
  23. with gr.Row():
  24. data_upload = gr.Dataframe(visible=False, label="当前上传数据", max_height=300)
  25. with gr.Row():
  26. data_insight = gr.Dataframe(visible=False, label="数据探查", max_height=600, wrap=True)
  27. input_elems.update(
  28. {project_name, file_data, data_upload})
  29. elem_dict.update(dict(
  30. project_name=project_name,
  31. file_data=file_data,
  32. data_upload=data_upload
  33. ))
  34. with gr.TabItem("训练"):
  35. with gr.Row():
  36. with gr.Column():
  37. with gr.Row():
  38. model_type = gr.Dropdown(["lr"], value="lr", label="模型")
  39. search_strategy = gr.Dropdown(["iv"], value="iv", label="特征搜索策略")
  40. with gr.Row():
  41. y_column = gr.Dropdown(label="Y标签列", interactive=True, info="其值应该是0或者1")
  42. x_columns_candidate = gr.Dropdown(label="X特征列", multiselect=True, interactive=True,
  43. info="不应包含Y特征列,不选择则使用全部特征")
  44. with gr.Row():
  45. x_candidate_num = gr.Number(value=10, label="建模最多保留特征数", info="保留最重要的N个特征",
  46. interactive=True)
  47. sample_rate = gr.Slider(0.05, 1, value=0.1, label="分箱组合采样率", info="对2-5箱所有分箱组合进行采样",
  48. step=0.01, interactive=True)
  49. special_values = gr.Textbox(label="特殊值", placeholder="可以是dict list str格式",
  50. info="分箱时特殊值会单独一个分箱")
  51. with gr.Row():
  52. test_split_strategy = gr.Dropdown(["随机"], value="随机", label="测试集划分方式")
  53. test_split_rate = gr.Slider(0, 0.5, value=0.3, label="测试集划分比例", step=0.05, interactive=True)
  54. train_button = gr.Button("开始训练", variant="primary")
  55. with gr.Column():
  56. gr.Textbox(value="输出")
  57. input_elems.update(
  58. {model_type, search_strategy, y_column, x_columns_candidate, x_candidate_num, sample_rate,
  59. special_values, test_split_strategy, test_split_rate
  60. })
  61. elem_dict.update(dict(
  62. model_type=model_type,
  63. feature_search_strategy=search_strategy,
  64. y_column=y_column,
  65. x_columns_candidate=x_columns_candidate,
  66. x_candidate_num=x_candidate_num,
  67. sample_rate=sample_rate,
  68. special_values=special_values,
  69. test_split_strategy=test_split_strategy,
  70. test_split_rate=test_split_rate,
  71. ))
  72. engine.add_elems(elem_dict)
  73. project_name.change(fn=f_project_is_exist, inputs=input_elems)
  74. file_data.upload(fn=f_data_upload, inputs=input_elems, outputs=[data_upload, data_insight, y_column,
  75. x_columns_candidate])
  76. train_button.click(fn=f_train, inputs=input_elems)
  77. demo.launch(share=True)
  78. if __name__ == "__main__":
  79. pass