feature_utils.py 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124
  1. # -*- coding:utf-8 -*-
  2. """
  3. @author: yq
  4. @time: 2023/12/28
  5. @desc: 特征工具类
  6. """
  7. import pandas as pd
  8. import toad as td
  9. from sklearn.preprocessing import KBinsDiscretizer
  10. from entitys import DataSplitEntity
  11. from enums import BinsStrategyEnum
  12. def f_get_bins(data: DataSplitEntity, feat: str, strategy: str = 'quantile', nbins: int = 10) -> pd.DataFrame:
  13. # 等频分箱
  14. if strategy == BinsStrategyEnum.QUANTILE.value:
  15. kbin_encoder = KBinsDiscretizer(n_bins=nbins, encode='ordinal', strategy='quantile')
  16. feature_binned = kbin_encoder.fit_transform(data[feat])
  17. return feature_binned.astype(int).astype(str)
  18. # 等宽分箱
  19. if strategy == BinsStrategyEnum.WIDTH.value:
  20. bin_width = (data.train_data()[feat].max() - data.train_data()[feat].min()) / nbins
  21. return pd.cut(data.train_data()[feat], bins=nbins, labels=[f'Bin_{i}' for i in range(1, nbins + 1)])
  22. # 使用toad分箱
  23. '''
  24. c = td.transfrom.Combiner()
  25. # method参数需要根据toad指定的几种方法名称选择
  26. c.fit(data, y = 'target', method = strategy, min_samples=None, n_bins = nbins, empty_separate = False)
  27. # 返回toad分箱combiner,用于训练集和测试集的分箱
  28. # 可使用c.export()[feature]查看某一特征的分箱临界值
  29. return c
  30. '''
  31. # 此函数入参应为scorecardpy进行woebin函数转换后的dataframe
  32. def f_get_bins_display(bins_info: pd.DataFrame) -> pd.DataFrame:
  33. df_list = []
  34. for col, bin_data in bins_info.items():
  35. tmp_df = pd.DataFrame(bin_data)
  36. df_list.append(tmp_df)
  37. result_df = pd.concat(df_list, ignore_index=True)
  38. total_bad = result_df['bad'].sum()
  39. total_cnt = result_df['count'].sum()
  40. # 整体的坏样本率
  41. br_overall = total_bad / total_cnt
  42. result_df['lift'] = result_df['badprob'] / br_overall
  43. result_df = \
  44. result_df.sort_values(['total_iv', 'variable'], ascending=False).set_index(['variable', 'total_iv', 'bin']) \
  45. [['count_distr', 'count', 'good', 'bad', 'badprob', 'lift', 'bin_iv', 'woe']]
  46. return result_df.style.format(subset=['count', 'good', 'bad'], precision=0).format(
  47. subset=['count_distr', 'bad', 'lift',
  48. 'badprob', 'woe', 'bin_iv'], precision=4).bar(subset=['badprob', 'bin_iv', 'lift'],
  49. color=['#d65f58', '#5fbb7a'])
  50. # 此函数筛除变量分箱不单调或非U型的变量
  51. def f_bins_filter(bins: pd.DataFrame, cols: list) -> list:
  52. result_cols = []
  53. # 遍历原始变量列表
  54. for tmp_col in cols:
  55. tmp_br = bins[tmp_col]['bad_prob'].values.tolist()
  56. tmp_len = len(tmp_br)
  57. if tmp_len <= 2:
  58. result_cols.append(tmp_col)
  59. else:
  60. tmp_judge = f_judge_monto(tmp_br)
  61. # f_judge_monto 函数返回1表示list单调,0表示非单调
  62. if tmp_judge:
  63. result_cols.append(tmp_col)
  64. return result_cols
  65. # 此函数判断list的单调性,允许至多N次符号变化
  66. def f_judge_monto(bd_list: list, pos_neg_cnt: int = 1) -> int:
  67. start_tr = bd_list[1] - bd_list[0]
  68. tmp_len = len(bd_list)
  69. pos_neg_flag = 0
  70. for i in range(2, tmp_len):
  71. tmp_tr = bd_list[i] - bd_list[i - 1]
  72. # 后一位bad_rate减前一位bad_rate,保证bad_rate的单调性
  73. # 记录符号变化, 允许 最多一次符号变化,即U型分布
  74. if (tmp_tr >= 0 and start_tr >= 0) or (tmp_tr <= 0 and start_tr <= 0):
  75. # 满足趋势保持,查看下一位
  76. continue
  77. else:
  78. # 记录一次符号变化
  79. start_tr = tmp_tr
  80. pos_neg_flag += 1
  81. if pos_neg_flag > pos_neg_cnt:
  82. return False
  83. # 记录满足趋势要求的变量
  84. if pos_neg_flag <= pos_neg_cnt:
  85. return True
  86. return False
  87. def f_get_woe(data: DataSplitEntity, c: td.transform.Combiner, to_drop: list) -> pd.DataFrame:
  88. transer = td.transform.WOETransformer()
  89. # 根据训练数据来训练woe转换器,并选择目标变量和排除变量
  90. train_woe = transer.fit_transform(c.transform(data.train_data()), data.train_data()['target'],
  91. exclude=to_drop + ['target'])
  92. test_woe = transer.transform(c.transfrom(data.test_data()))
  93. oot_woe = transer.transform(c.transform(data.val_data()))
  94. return train_woe, test_woe, oot_woe
  95. def f_get_iv(data: DataSplitEntity) -> pd.DataFrame:
  96. # 计算前,先排除掉不需要计算IV的cols
  97. return td.quality(data, 'target', iv_only=True)
  98. def f_get_psi(train_data: DataSplitEntity, oot_data: DataSplitEntity) -> pd.DataFrame:
  99. # 计算前,先排除掉不需要的cols
  100. return td.metrics.PSI(train_data, oot_data)
  101. def f_get_corr(data: DataSplitEntity, meth: str = 'spearman') -> pd.DataFrame:
  102. return data.train_data().corr(method=meth)
  103. def f_get_ivf(data: DataSplitEntity) -> pd.DataFrame:
  104. pass