123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- # -*- coding:utf-8 -*-
- """
- @author: yq
- @time: 2024/1/2
- @desc: iv值及单调性筛选类
- """
- from itertools import combinations_with_replacement
- from typing import List
- import numpy as np
- import pandas as pd
- from entitys import DataSplitEntity, CandidateFeatureEntity, DataProcessConfigEntity
- from .feature_utils import f_judge_monto
- from .filter_strategy_base import FilterStrategyBase
- class StrategyIv(FilterStrategyBase):
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- def _f_get_best_bins(self, data: DataSplitEntity, x_column: str):
- # 贪婪搜索【训练集】及【测试集】加起来【iv】值最高的且【单调】的分箱
- interval = self.data_process_config.bin_search_interval
- iv_threshold = self.data_process_config.iv_threshold
- special_values = self.data_process_config.get_special_values(x_column)
- y_column = self.data_process_config.y_column
- def _n0(x):
- return sum(x == 0)
- def _n1(x):
- return sum(x == 1)
- def _f_distribute_balls(balls, boxes):
- # 计算在 balls - 1 个空位中放入 boxes - 1 个隔板的方法数
- total_ways = combinations_with_replacement(range(balls + boxes - 1), boxes - 1)
- distribute_list = []
- # 遍历所有可能的隔板位置
- for combo in total_ways:
- # 根据隔板位置分配球
- distribution = [0] * boxes
- start = 0
- for i, divider in enumerate(combo):
- distribution[i] = divider - start + 1
- start = divider + 1
- distribution[-1] = balls - start # 最后一个箱子的球数
- # 确保每个箱子至少有一个球
- if all(x > 0 for x in distribution):
- distribute_list.append(distribution)
- return distribute_list
- def _get_sv_bins(df, x_column, y_column, special_values):
- # special_values_bins
- sv_bin_list = []
- for special in special_values:
- dtm = df[df[x_column] == special]
- if len(dtm) != 0:
- dtm['bin'] = [str(special)] * len(dtm)
- binning = dtm.groupby(['bin'], group_keys=False)[y_column].agg(
- [_n0, _n1]).reset_index().rename(columns={'_n0': 'good', '_n1': 'bad'})
- binning['is_special_values'] = [True] * len(binning)
- sv_bin_list.append(binning)
- return sv_bin_list
- def _get_bins(df, x_column, y_column, breaks_list):
- dtm = pd.DataFrame({'y': df[y_column], 'value': df[x_column]})
- bstbrks = [-np.inf] + breaks_list + [np.inf]
- labels = ['[{},{})'.format(bstbrks[i], bstbrks[i + 1]) for i in range(len(bstbrks) - 1)]
- dtm.loc[:, 'bin'] = pd.cut(dtm['value'], bstbrks, right=False, labels=labels)
- dtm['bin'] = dtm['bin'].astype(str)
- bins = dtm.groupby(['bin'], group_keys=False)['y'].agg([_n0, _n1]) \
- .reset_index().rename(columns={'_n0': 'good', '_n1': 'bad'})
- bins['is_special_values'] = [False] * len(bins)
- return bins
- def _calculation_iv(bins):
- bins['count'] = bins['good'] + bins['bad']
- bins['badprob'] = bins['bad'] / bins['count']
- # 单调性判断
- bad_prob = bins[bins['is_special_values'] == False]['badprob'].values.tolist()
- if not f_judge_monto(bad_prob):
- return -1
- # 计算iv
- infovalue = pd.DataFrame({'good': bins['good'], 'bad': bins['bad']}) \
- .replace(0, 0.9) \
- .assign(
- DistrBad=lambda x: x.bad / sum(x.bad),
- DistrGood=lambda x: x.good / sum(x.good)
- ) \
- .assign(iv=lambda x: (x.DistrBad - x.DistrGood) * np.log(x.DistrBad / x.DistrGood)) \
- .iv
- bins['bin_iv'] = infovalue
- bins['total_iv'] = bins['bin_iv'].sum()
- iv = bins['total_iv'].values[0]
- return iv
- train_data = data.train_data
- train_data_filter = train_data[~train_data[x_column].isin(special_values)]
- train_data_filter = train_data_filter.sort_values(by=x_column, ascending=True)
- train_data_x = train_data_filter[x_column]
- test_data = data.test_data
- test_data_filter = None
- if test_data is not None and len(test_data) != 0:
- test_data_filter = test_data[~test_data[x_column].isin(special_values)]
- test_data_filter = test_data_filter.sort_values(by=x_column, ascending=True)
- # 构造数据切分点
- # 计算 2 - 5 箱的情况
- distribute_list = []
- points_list = []
- for bin_num in list(range(2, 6)):
- distribute_list.extend(_f_distribute_balls(int(1 / interval), bin_num))
- for distribute in distribute_list:
- point_list_cache = []
- point_percentile_list = [sum(distribute[0:idx + 1]) * interval for idx, _ in enumerate(distribute[0:-1])]
- for point_percentile in point_percentile_list:
- point = train_data_x.iloc[int(len(train_data_x) * point_percentile)]
- if point not in point_list_cache:
- point_list_cache.append(point)
- if point_list_cache not in points_list:
- points_list.append(point_list_cache)
- # IV与单调性过滤
- iv_max = 0
- breaks_list = []
- train_sv_bin_list = _get_sv_bins(train_data, x_column, y_column, special_values)
- test_sv_bin_list = None
- if test_data_filter is not None:
- test_sv_bin_list = _get_sv_bins(test_data, x_column, y_column, special_values)
- from tqdm import tqdm
- for point_list in tqdm(points_list):
- train_bins = _get_bins(train_data_filter, x_column, y_column, point_list)
- # 与special_values合并计算iv
- for sv_bin in train_sv_bin_list:
- train_bins = pd.concat((train_bins, sv_bin))
- train_iv = _calculation_iv(train_bins)
- # 只限制训练集的单调性与iv值大小
- if train_iv < iv_threshold:
- continue
- test_iv = 0
- if test_data_filter is not None:
- test_bins = _get_bins(test_data_filter, x_column, y_column, point_list)
- for sv_bin in test_sv_bin_list:
- test_bins = pd.concat((test_bins, sv_bin))
- test_iv = _calculation_iv(test_bins)
- iv = train_iv + test_iv
- if iv > iv_max:
- iv_max = iv
- breaks_list = point_list
- return iv_max, breaks_list
- def filter(self, data: DataSplitEntity, *args, **kwargs):
- x_columns_candidate = self.data_process_config.x_columns_candidate
- candidate_num = self.data_process_config.candidate_num
- candidate_list: List[CandidateFeatureEntity] = []
- for x_column in x_columns_candidate:
- iv_max, breaks_list = self._f_get_best_bins(data, x_column)
- candidate_list.append(CandidateFeatureEntity(x_column, breaks_list, iv_max))
- candidate_list.sort(key=lambda x: x.iv_max, reverse=True)
- return candidate_list[0:candidate_num]
|