data_feaure_entity.py 2.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384
  1. # -*- coding: utf-8 -*-
  2. """
  3. @author: yq
  4. @time: 2024/11/1
  5. @desc:
  6. """
  7. import pandas as pd
  8. from commom import f_format_float
  9. class DataFeatureEntity():
  10. """
  11. 数据特征准备完毕
  12. """
  13. def __init__(self, data_x: pd.DataFrame, data_y: pd.Series):
  14. self._data_x = data_x
  15. self._data_y = data_y
  16. @property
  17. def x_columns(self):
  18. return self._data_x.columns.tolist()
  19. @property
  20. def data_x(self):
  21. return self._data_x
  22. @property
  23. def data_y(self):
  24. return self._data_y
  25. def get_odds0(self):
  26. train_good_len = len(self._data_y[self._data_y == 0])
  27. train_bad_len = len(self._data_y[self._data_y == 1])
  28. odds0 = train_bad_len / train_good_len
  29. return odds0
  30. class DataSplitEntity():
  31. """
  32. 初始数据训练集测试集划分
  33. """
  34. def __init__(self, train_data: pd.DataFrame, test_data: pd.DataFrame):
  35. self._train_data = train_data
  36. self._test_data = test_data
  37. @property
  38. def train_data(self):
  39. return self._train_data
  40. @property
  41. def test_data(self):
  42. return self._test_data
  43. def get_distribution(self, y_column) -> pd.DataFrame:
  44. df = pd.DataFrame()
  45. train_data_len = len(self._train_data)
  46. train_bad_len = len(self._train_data[self._train_data[y_column] == 1])
  47. train_bad_rate = f"{f_format_float(train_bad_len / train_data_len * 100, 2)}%"
  48. test_data_len = len(self._test_data)
  49. test_bad_len = len(self._test_data[self._test_data[y_column] == 1])
  50. test_bad_rate = f"{f_format_float(test_bad_len / test_data_len * 100, 2)}%"
  51. total = train_data_len + test_data_len
  52. bad_total = train_bad_len + test_bad_len
  53. bad_rate = f"{f_format_float(bad_total / total * 100, 2)}%"
  54. df["样本"] = ["训练集", "测试集", "合计"]
  55. df["样本数"] = [train_data_len, test_data_len, total]
  56. df["样本占比"] = [f"{f_format_float(train_data_len / total * 100, 2)}%",
  57. f"{f_format_float(test_data_len / total * 100, 2)}%", "100%"]
  58. df["坏样本数"] = [train_bad_len, test_bad_len, bad_total]
  59. df["坏样本比例"] = [train_bad_rate, test_bad_rate, bad_rate]
  60. return df
  61. if __name__ == "__main__":
  62. pass