utils.py 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135
  1. # -*- coding:utf-8 -*-
  2. """
  3. @author: yq
  4. @time: 2023/12/28
  5. @desc: 特征工具类
  6. """
  7. from typing import Union
  8. import numpy as np
  9. import pandas as pd
  10. from statsmodels.stats.outliers_influence import variance_inflation_factor as vif
  11. FORMAT_DICT = {
  12. # 比例类 -1 - 1
  13. "bin_rate1": np.arange(-1, 1 + 0.1, 0.1),
  14. # 次数类1 0 -10
  15. "bin_cnt1": np.arange(0, 11, 1),
  16. # 次数类2 0 - 20
  17. "bin_cnt2": [0, 1, 2, 3, 4, 5, 8, 10, 15, 20],
  18. # 次数类3 0 - 50
  19. "bin_cnt3": [0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50],
  20. # 次数类4 0 - 100
  21. "bin_cnt4": [0, 3, 6, 10, 15, 20, 30, 40, 50, 80, 100],
  22. # 金额类1 0 - 1w
  23. "bin_amt1": np.arange(0, 1.1e4, 1e3),
  24. # 金额类2 0 - 5w
  25. "bin_amt2": np.arange(0, 5.5e4, 5e3),
  26. # 金额类3 0 - 10w
  27. "bin_amt3": np.arange(0, 11e4, 1e4),
  28. # 金额类4 0 - 20w
  29. "bin_amt4": [0, 1e4, 2e4, 3e4, 4e4, 5e4, 8e4, 10e4, 15e4, 20e4],
  30. # 金额类5 0 - 100w
  31. "bin_amt5": [0, 5e4, 10e4, 15e4, 20e4, 25e4, 30e4, 40e4, 50e4, 100e4],
  32. # 年龄类
  33. "bin_age": [20, 25, 30, 35, 40, 45, 50, 55, 60, 65],
  34. }
  35. # 粗分箱
  36. def f_format_bin(data_describe: pd.Series, raw_v):
  37. percent10 = data_describe["10%"]
  38. percent90 = data_describe["90%"]
  39. format_v = raw_v
  40. # 筛选最合适的标准化分箱节点
  41. bin = None
  42. for k, v_list in FORMAT_DICT.items():
  43. bin_min = min(v_list)
  44. bin_max = max(v_list)
  45. if percent10 >= bin_min and percent90 <= bin_max:
  46. if bin is None:
  47. bin = (k, bin_max)
  48. elif bin[1] > bin_max:
  49. bin = (k, bin_max)
  50. if bin is None:
  51. return format_v
  52. # 选择分箱内适合的切分点
  53. v_list = FORMAT_DICT[bin[0]]
  54. for idx in range(1, len(v_list)):
  55. v_left = v_list[idx - 1]
  56. v_right = v_list[idx]
  57. # 就近原则
  58. if v_left <= raw_v <= v_right:
  59. format_v = v_right if (raw_v - v_left) - (v_right - raw_v) > 0 else v_left
  60. if format_v not in v_list:
  61. if format_v > v_list[-1]:
  62. format_v = v_list[-1]
  63. if format_v < v_list[0]:
  64. format_v = v_list[0]
  65. return format_v
  66. # 单调性变化次数
  67. def f_monto_shift(badprobs: list) -> int:
  68. if len(badprobs) <= 2:
  69. return 0
  70. before = badprobs[1] - badprobs[0]
  71. change_cnt = 0
  72. for i in range(2, len(badprobs)):
  73. next = badprobs[i] - badprobs[i - 1]
  74. # 后一位bad_rate减前一位bad_rate,保证bad_rate的单调性
  75. if (next >= 0 and before >= 0) or (next <= 0 and before <= 0):
  76. # 满足趋势保持,查看下一位
  77. continue
  78. else:
  79. # 记录一次符号变化
  80. before = next
  81. change_cnt += 1
  82. return change_cnt
  83. # 变量趋势一致变化次数
  84. def f_trend_shift(train_badprobs: list, test_badprobs: list) -> int:
  85. if len(train_badprobs) != len(test_badprobs) or len(train_badprobs) < 2 or len(test_badprobs) < 2:
  86. return 0
  87. train_monto = np.array(train_badprobs[1:]) - np.array(train_badprobs[0:-1])
  88. train_monto = np.where(train_monto >= 0, 1, -1)
  89. test_monto = np.array(test_badprobs[1:]) - np.array(test_badprobs[0:-1])
  90. test_monto = np.where(test_monto >= 0, 1, -1)
  91. contrast = train_monto - test_monto
  92. return len(contrast[contrast != 0])
  93. def f_get_psi(train_bins, test_bins):
  94. train_bins['count'] = train_bins['good'] + train_bins['bad']
  95. train_bins['proportion'] = train_bins['count'] / train_bins['count'].sum()
  96. test_bins['count'] = test_bins['good'] + test_bins['bad']
  97. test_bins['proportion'] = test_bins['count'] / test_bins['count'].sum()
  98. psi = (train_bins['proportion'] - test_bins['proportion']) * np.log(
  99. train_bins['proportion'] / test_bins['proportion'])
  100. psi = psi.reset_index()
  101. psi = psi.rename(columns={"proportion": "psi"})
  102. return psi["psi"].sum().round(3)
  103. def f_get_corr(data: pd.DataFrame, meth: str = 'spearman') -> pd.DataFrame:
  104. return data.corr(method=meth)
  105. def f_get_vif(data: pd.DataFrame) -> Union[pd.DataFrame, None]:
  106. if len(data.columns.to_list()) <= 1:
  107. return None
  108. vif_v = [round(vif(data.values, data.columns.get_loc(i)), 3) for i in data.columns]
  109. df_vif = pd.DataFrame()
  110. df_vif["变量"] = [column.replace("_woe", "") for column in data.columns]
  111. df_vif['vif'] = vif_v
  112. return df_vif