strategy_iv.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267
  1. # -*- coding:utf-8 -*-
  2. """
  3. @author: yq
  4. @time: 2024/1/2
  5. @desc: iv值及单调性筛选类
  6. """
  7. from itertools import combinations_with_replacement
  8. from typing import List, Dict
  9. import numpy as np
  10. import pandas as pd
  11. import scorecardpy as sc
  12. from pandas.core.dtypes.common import is_numeric_dtype
  13. from entitys import DataSplitEntity, CandidateFeatureEntity
  14. from .feature_utils import f_judge_monto, f_get_corr
  15. from .filter_strategy_base import FilterStrategyBase
  16. class StrategyIv(FilterStrategyBase):
  17. def __init__(self, *args, **kwargs):
  18. super().__init__(*args, **kwargs)
  19. def _f_corr_filter(self, data: DataSplitEntity, candidate_dict: Dict[str, CandidateFeatureEntity]) -> List[str]:
  20. # 相关性剔除变量
  21. corr_threshold = self.data_process_config.corr_threshold
  22. y_column = self.data_process_config.y_column
  23. special_values = self.data_process_config.special_values
  24. train_data = data.train_data
  25. x_columns_candidate = list(candidate_dict.keys())
  26. breaks_list = {}
  27. for column, candidate in candidate_dict.items():
  28. breaks_list[column] = candidate.breaks_list
  29. bins = sc.woebin(train_data[x_columns_candidate + [y_column]], y=y_column, breaks_list=breaks_list,
  30. special_values=special_values)
  31. train_woe = sc.woebin_ply(train_data[x_columns_candidate], bins)
  32. corr_df = f_get_corr(train_woe)
  33. corr_dict = corr_df.to_dict()
  34. for column, corr in corr_dict.items():
  35. column = column.replace("_woe","")
  36. if column not in x_columns_candidate:
  37. continue
  38. for challenger_column, challenger_corr in corr.items():
  39. challenger_column = challenger_column.replace("_woe", "")
  40. if challenger_corr < corr_threshold or column == challenger_column \
  41. or challenger_column not in x_columns_candidate:
  42. continue
  43. iv_max = candidate_dict[column].iv_max
  44. challenger_iv_max = candidate_dict[challenger_column].iv_max
  45. if iv_max > challenger_iv_max:
  46. x_columns_candidate.remove(challenger_column)
  47. else:
  48. x_columns_candidate.remove(column)
  49. break
  50. return x_columns_candidate
  51. def _f_wide_filter(self, data: DataSplitEntity) -> Dict:
  52. # 粗筛变量
  53. train_data = data.train_data
  54. test_data = data.test_data
  55. special_values = self.data_process_config.special_values
  56. y_column = self.data_process_config.y_column
  57. iv_threshold_wide = self.data_process_config.iv_threshold_wide
  58. x_columns_candidate = self.data_process_config.x_columns_candidate
  59. if x_columns_candidate is None or len(x_columns_candidate) == 0:
  60. x_columns_candidate = train_data.columns.tolist()
  61. x_columns_candidate.remove(y_column)
  62. bins_train = sc.woebin(train_data[x_columns_candidate + [y_column]], y=y_column, special_values=special_values,
  63. bin_num_limit=5)
  64. breaks_list = {}
  65. for column, bin in bins_train.items():
  66. breaks_list[column] = list(bin['breaks'])
  67. bins_test = None
  68. if test_data is not None and len(test_data) != 0:
  69. bins_test = sc.woebin(test_data[x_columns_candidate + [y_column]], y=y_column, breaks_list=breaks_list,
  70. special_values=special_values
  71. )
  72. bins_iv_dict = {}
  73. for column, bin_train in bins_train.items():
  74. train_iv = bin_train['total_iv'][0]
  75. test_iv = 0
  76. if bins_test is not None:
  77. bin_test = bins_test[column]
  78. test_iv = bin_test['total_iv'][0]
  79. iv_max = train_iv + test_iv
  80. if train_iv < iv_threshold_wide:
  81. continue
  82. bins_iv_dict[column] = {"iv_max": iv_max, "breaks_list": breaks_list[column]}
  83. return bins_iv_dict
  84. def _f_get_best_bins_numeric(self, data: DataSplitEntity, x_column: str):
  85. # 贪婪搜索【训练集】及【测试集】加起来【iv】值最高的且【单调】的分箱
  86. interval = self.data_process_config.bin_search_interval
  87. iv_threshold = self.data_process_config.iv_threshold
  88. special_values = self.data_process_config.get_special_values(x_column)
  89. y_column = self.data_process_config.y_column
  90. sample_rate = self.data_process_config.sample_rate
  91. def _n0(x):
  92. return sum(x == 0)
  93. def _n1(x):
  94. return sum(x == 1)
  95. def _f_distribute_balls(balls, boxes):
  96. # 计算在 balls - 1 个空位中放入 boxes - 1 个隔板的方法数
  97. total_ways = combinations_with_replacement(range(balls + boxes - 1), boxes - 1)
  98. distribute_list = []
  99. # 遍历所有可能的隔板位置
  100. for combo in total_ways:
  101. # 根据隔板位置分配球
  102. distribution = [0] * boxes
  103. start = 0
  104. for i, divider in enumerate(combo):
  105. distribution[i] = divider - start + 1
  106. start = divider + 1
  107. distribution[-1] = balls - start # 最后一个箱子的球数
  108. # 确保每个箱子至少有一个球
  109. if all(x > 0 for x in distribution):
  110. distribute_list.append(distribution)
  111. return distribute_list
  112. def _get_sv_bins(df, x_column, y_column, special_values):
  113. # special_values_bins
  114. sv_bin_list = []
  115. for special in special_values:
  116. dtm = df[df[x_column] == special]
  117. if len(dtm) != 0:
  118. dtm['bin'] = [str(special)] * len(dtm)
  119. binning = dtm.groupby(['bin'], group_keys=False)[y_column].agg(
  120. [_n0, _n1]).reset_index().rename(columns={'_n0': 'good', '_n1': 'bad'})
  121. binning['is_special_values'] = [True] * len(binning)
  122. sv_bin_list.append(binning)
  123. return sv_bin_list
  124. def _get_bins(df, x_column, y_column, breaks_list):
  125. dtm = pd.DataFrame({'y': df[y_column], 'value': df[x_column]})
  126. bstbrks = [-np.inf] + breaks_list + [np.inf]
  127. labels = ['[{},{})'.format(bstbrks[i], bstbrks[i + 1]) for i in range(len(bstbrks) - 1)]
  128. dtm.loc[:, 'bin'] = pd.cut(dtm['value'], bstbrks, right=False, labels=labels)
  129. dtm['bin'] = dtm['bin'].astype(str)
  130. bins = dtm.groupby(['bin'], group_keys=False)['y'].agg([_n0, _n1]) \
  131. .reset_index().rename(columns={'_n0': 'good', '_n1': 'bad'})
  132. bins['is_special_values'] = [False] * len(bins)
  133. return bins
  134. def _calculation_iv(bins):
  135. bins['count'] = bins['good'] + bins['bad']
  136. bins['badprob'] = bins['bad'] / bins['count']
  137. # 单调性判断
  138. bad_prob = bins[bins['is_special_values'] == False]['badprob'].values.tolist()
  139. if not f_judge_monto(bad_prob):
  140. return -1
  141. # 计算iv
  142. infovalue = pd.DataFrame({'good': bins['good'], 'bad': bins['bad']}) \
  143. .replace(0, 0.9) \
  144. .assign(
  145. DistrBad=lambda x: x.bad / sum(x.bad),
  146. DistrGood=lambda x: x.good / sum(x.good)
  147. ) \
  148. .assign(iv=lambda x: (x.DistrBad - x.DistrGood) * np.log(x.DistrBad / x.DistrGood)) \
  149. .iv
  150. bins['bin_iv'] = infovalue
  151. bins['total_iv'] = bins['bin_iv'].sum()
  152. iv = bins['total_iv'].values[0]
  153. return iv
  154. def _f_sampling(distribute_list: list, sample_rate: float):
  155. # 采样,完全贪婪搜索耗时太长
  156. sampled_list = distribute_list[::int(1 / sample_rate)]
  157. return sampled_list
  158. train_data = data.train_data
  159. train_data_filter = train_data[~train_data[x_column].isin(special_values)]
  160. train_data_filter = train_data_filter.sort_values(by=x_column, ascending=True)
  161. train_data_x = train_data_filter[x_column]
  162. test_data = data.test_data
  163. test_data_filter = None
  164. if test_data is not None and len(test_data) != 0:
  165. test_data_filter = test_data[~test_data[x_column].isin(special_values)]
  166. test_data_filter = test_data_filter.sort_values(by=x_column, ascending=True)
  167. # 构造数据切分点
  168. # 计算 2 - 5 箱的情况
  169. distribute_list = []
  170. points_list = []
  171. for bin_num in list(range(2, 6)):
  172. distribute_list_cache = _f_distribute_balls(int(1 / interval), bin_num)
  173. # 4箱及以上得采样,不然耗时太久
  174. sample_num = 1000 * sample_rate
  175. if sample_rate <= 0.15:
  176. sample_num *= 2
  177. if bin_num == 4 and len(distribute_list_cache) >= sample_num:
  178. distribute_list_cache = _f_sampling(distribute_list_cache, sample_num / len(distribute_list_cache))
  179. sample_num = 4000 * sample_rate
  180. if bin_num == 5 and len(distribute_list_cache) >= sample_num:
  181. distribute_list_cache = _f_sampling(distribute_list_cache, sample_num / len(distribute_list_cache))
  182. distribute_list.extend(distribute_list_cache)
  183. for distribute in distribute_list:
  184. point_list_cache = []
  185. point_percentile_list = [sum(distribute[0:idx + 1]) * interval for idx, _ in enumerate(distribute[0:-1])]
  186. for point_percentile in point_percentile_list:
  187. point = train_data_x.iloc[int(len(train_data_x) * point_percentile)]
  188. if point not in point_list_cache:
  189. point_list_cache.append(point)
  190. if point_list_cache not in points_list:
  191. points_list.append(point_list_cache)
  192. # IV与单调性过滤
  193. iv_max = 0
  194. breaks_list = []
  195. train_sv_bin_list = _get_sv_bins(train_data, x_column, y_column, special_values)
  196. test_sv_bin_list = None
  197. if test_data_filter is not None:
  198. test_sv_bin_list = _get_sv_bins(test_data, x_column, y_column, special_values)
  199. from tqdm import tqdm
  200. for point_list in tqdm(points_list):
  201. train_bins = _get_bins(train_data_filter, x_column, y_column, point_list)
  202. # 与special_values合并计算iv
  203. for sv_bin in train_sv_bin_list:
  204. train_bins = pd.concat((train_bins, sv_bin))
  205. train_iv = _calculation_iv(train_bins)
  206. # 只限制训练集的单调性与iv值大小
  207. if train_iv < iv_threshold:
  208. continue
  209. test_iv = 0
  210. if test_data_filter is not None:
  211. test_bins = _get_bins(test_data_filter, x_column, y_column, point_list)
  212. for sv_bin in test_sv_bin_list:
  213. test_bins = pd.concat((test_bins, sv_bin))
  214. test_iv = _calculation_iv(test_bins)
  215. iv = train_iv + test_iv
  216. if iv > iv_max:
  217. iv_max = iv
  218. breaks_list = point_list
  219. return iv_max, breaks_list
  220. def filter(self, data: DataSplitEntity, *args, **kwargs) -> List[CandidateFeatureEntity]:
  221. # 粗筛
  222. bins_iv_dict = self._f_wide_filter(data)
  223. x_columns_candidate = list(bins_iv_dict.keys())
  224. candidate_num = self.data_process_config.candidate_num
  225. candidate_dict: Dict[str, CandidateFeatureEntity] = {}
  226. for x_column in x_columns_candidate:
  227. if is_numeric_dtype(data.train_data[x_column]):
  228. iv_max, breaks_list = self._f_get_best_bins_numeric(data, x_column)
  229. candidate_dict[x_column] = CandidateFeatureEntity(x_column, breaks_list, iv_max)
  230. else:
  231. # 字符型暂时用scorecardpy来处理
  232. candidate_dict[x_column] = CandidateFeatureEntity(x_column, bins_iv_dict[x_column]["breaks_list"],
  233. bins_iv_dict[x_column]["iv_max"])
  234. # 相关性进一步剔除变量
  235. x_columns_candidate = self._f_corr_filter(data, candidate_dict)
  236. candidate_list: List[CandidateFeatureEntity] = []
  237. for x_column, v in candidate_dict.items():
  238. if x_column in x_columns_candidate:
  239. candidate_list.append(v)
  240. candidate_list.sort(key=lambda x: x.iv_max, reverse=True)
  241. return candidate_list[0:candidate_num]