123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- # -*- coding: utf-8 -*-
- """
- @author: yq
- @time: 2024/12/4
- @desc:
- """
- import gradio as gr
- from init import init
- from webui import f_project_is_exist, f_data_upload, engine, f_train, f_download_report
- init()
- input_elems = set()
- elem_dict = {}
- with gr.Blocks() as demo:
- gr.HTML('<h1 ><center><font size="5">Easy-ML</font></center></h1>')
- gr.HTML('<h2 ><center><font size="2">快速建模工具</font></center></h2>')
- gr.State([])
- with gr.Tabs():
- with gr.TabItem("数据"):
- with gr.Row():
- project_name = gr.Textbox(label="项目名称", placeholder="请输入不重复的项目名称",
- info="项目名称将会被作为缓存目录名称,如果重复会导致结果被覆盖")
- with gr.Row():
- file_data = gr.File(label="建模数据", file_types=[".csv", ".xlsx"])
- with gr.Row():
- data_upload = gr.Dataframe(visible=False, label="当前上传数据", max_height=300)
- with gr.Row():
- data_insight = gr.Dataframe(visible=False, label="数据探查", max_height=600, wrap=True)
- input_elems.update(
- {project_name, file_data, data_upload, data_insight})
- elem_dict.update(dict(
- project_name=project_name,
- file_data=file_data,
- data_upload=data_upload,
- data_insight=data_insight
- ))
- with gr.TabItem("训练"):
- with gr.Row():
- with gr.Column():
- with gr.Row():
- model_type = gr.Dropdown(["lr"], value="lr", label="模型")
- search_strategy = gr.Dropdown(["iv"], value="iv", label="特征搜索策略")
- with gr.Row():
- y_column = gr.Dropdown(label="Y标签列", interactive=True, info="其值应该是0或者1")
- x_columns_candidate = gr.Dropdown(label="X特征列", multiselect=True, interactive=True,
- info="不应包含Y特征列,不选择则使用全部特征")
- with gr.Row():
- x_candidate_num = gr.Number(value=10, label="建模最多保留特征数", info="保留最重要的N个特征",
- interactive=True)
- sample_rate = gr.Slider(0.05, 1, value=0.1, label="分箱组合采样率", info="对2-5箱所有分箱组合进行采样",
- step=0.01, interactive=True)
- special_values = gr.Textbox(label="特殊值", placeholder="可以是dict list str格式",
- info="分箱时特殊值会单独一个分箱")
- with gr.Row():
- test_split_strategy = gr.Dropdown(["随机"], value="随机", label="测试集划分方式")
- test_split_rate = gr.Slider(0, 0.5, value=0.3, label="测试集划分比例", step=0.05, interactive=True)
- train_button = gr.Button("开始训练", variant="primary", elem_id="train_button")
- input_elems.update(
- {model_type, search_strategy, y_column, x_columns_candidate, x_candidate_num, sample_rate,
- special_values, test_split_strategy, test_split_rate, train_button
- })
- elem_dict.update(dict(
- model_type=model_type,
- feature_search_strategy=search_strategy,
- y_column=y_column,
- x_columns_candidate=x_columns_candidate,
- x_candidate_num=x_candidate_num,
- sample_rate=sample_rate,
- special_values=special_values,
- test_split_strategy=test_split_strategy,
- test_split_rate=test_split_rate,
- train_button=train_button))
- with gr.Column():
- with gr.Row():
- train_progress = gr.Textbox(label="训练进度", scale=4)
- download_report = gr.DownloadButton(label="报告下载", variant="primary", elem_id="download_report",
- visible=False, scale=1)
- file_report = gr.File(visible=False)
- with gr.Row():
- auc_df = gr.Dataframe(visible=False, label="auc ks", max_height=300, interactive=False)
- with gr.Row():
- gallery_auc = gr.Gallery(label="auc ks", columns=[1], rows=[2], object_fit="contain",
- height="auto", visible=False, interactive=False)
- input_elems.update(
- {train_progress, download_report, file_report, auc_df, gallery_auc})
- elem_dict.update(dict(
- train_progress=train_progress,
- download_report=download_report,
- file_report=file_report,
- auc_df=auc_df,
- gallery_auc=gallery_auc))
- engine.add_elems(elem_dict)
- project_name.change(fn=f_project_is_exist, inputs=input_elems)
- file_data.upload(fn=f_data_upload, inputs=input_elems, outputs=[data_upload, data_insight, y_column,
- x_columns_candidate])
- train_button.click(fn=f_train, inputs=input_elems,
- outputs=[train_progress, auc_df, gallery_auc, download_report])
- download_report.click(fn=f_download_report, inputs=input_elems, outputs=download_report)
- demo.queue(default_concurrency_limit=5)
- demo.launch(share=False, show_error=True, server_name="0.0.0.0", server_port=18066)
- if __name__ == "__main__":
- pass
|