feature_utils.py 2.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. # -*- coding:utf-8 -*-
  2. """
  3. @author: yq
  4. @time: 2023/12/28
  5. @desc: 特征工具类
  6. """
  7. import pandas as pd
  8. from sklearn.preprocessing import KBinsDiscretizer
  9. from entitys import DataSplitEntity
  10. from enums import BinsStrategyEnum
  11. import toad as td
  12. def f_get_bins(data: DataSplitEntity, feat: str, strategy: str='quantile', nbins: int=10) -> pd.DataFrame:
  13. # 等频分箱
  14. if strategy == BinsStrategyEnum.QUANTILE.value:
  15. kbin_encoder = KBinsDiscretizer(n_bins=nbins, encode='ordinal', strategy='quantile')
  16. feature_binned = kbin_encoder.fit_transform(data[feat])
  17. return feature_binned.astype(int).astype(str)
  18. # 等宽分箱
  19. if strategy == BinsStrategyEnum.WIDTH.value:
  20. bin_width = (data[feat].max() - data[feat].min()) / nbins
  21. return pd.cut(data[feat], bins=nbins, labels=[f'Bin_{i}' for i in range(1, nbins + 1)])
  22. # 使用toad分箱
  23. '''
  24. c = td.transfrom.Combiner()
  25. # method参数需要根据toad指定的几种方法名称选择
  26. c.fit(data, y = 'target', method = strategy, min_samples=None, n_bins = nbins, empty_separate = False)
  27. # 返回toad分箱combiner,用于训练集和测试集的分箱
  28. # 可使用c.export()[feature]查看某一特征的分箱临界值
  29. return c
  30. '''
  31. def f_get_woe(data: DataSplitEntity, c: td.transform.Combiner, to_drop:list) -> pd.DataFrame:
  32. transer = td.transform.WOETransformer()
  33. # 根据训练数据来训练woe转换器,并选择目标变量和排除变量
  34. train_woe = transer.fit_transform(c.transform(data.train_data()), data.train_data()['target'],exclude=to_drop+['target'])
  35. test_woe = transer.transform(c.transfrom(data.test_data()))
  36. oot_woe = transer.transform(c.transform(data.val_data()))
  37. return train_woe, test_woe, oot_woe
  38. def f_get_iv(data: DataSplitEntity) -> pd.DataFrame:
  39. # 计算前,先排除掉不需要计算IV的cols
  40. return td.quality(data, 'target',iv_only=True)
  41. def f_get_psi(train_data: DataSplitEntity, oot_data: DataSplitEntity) -> pd.DataFrame:
  42. # 计算前,先排除掉不需要的cols
  43. return td.metrics.PSI(train_data, oot_data)
  44. def f_get_corr(data: DataSplitEntity, meth: str='spearman') -> pd.DataFrame:
  45. return data.train_data().corr(method=meth)
  46. def f_get_ivf(data: DataSplitEntity) -> pd.DataFrame:
  47. pass