strategy_iv.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423
  1. # -*- coding:utf-8 -*-
  2. """
  3. @author: yq
  4. @time: 2024/1/2
  5. @desc: iv值及单调性筛选类
  6. """
  7. import json
  8. from itertools import combinations_with_replacement
  9. from typing import List, Dict
  10. import matplotlib.pyplot as plt
  11. import numpy as np
  12. import pandas as pd
  13. import scorecardpy as sc
  14. import seaborn as sns
  15. from pandas.core.dtypes.common import is_numeric_dtype
  16. from tqdm import tqdm
  17. from commom import f_display_images_by_side
  18. from entitys import DataSplitEntity, CandidateFeatureEntity, DataPreparedEntity, DataFeatureEntity, MetricFucEntity
  19. from .feature_utils import f_judge_monto, f_get_corr, f_get_ivf, f_format_bin
  20. from .filter_strategy_base import FilterStrategyBase
  21. class StrategyIv(FilterStrategyBase):
  22. def __init__(self, *args, **kwargs):
  23. super().__init__(*args, **kwargs)
  24. def _f_get_iv_by_bins(self, bins) -> pd.DataFrame:
  25. iv = {key_: [round(value_['total_iv'].max(), 4)] for key_, value_ in bins.items()}
  26. iv = pd.DataFrame.from_dict(iv, orient='index', columns=['IV']).reset_index()
  27. iv = iv.sort_values('IV', ascending=False).reset_index(drop=True)
  28. iv.columns = ['变量', 'IV']
  29. return iv
  30. def _f_get_var_corr_image(self, train_woe):
  31. if len(train_woe.columns.to_list()) <= 1:
  32. return None
  33. train_corr = f_get_corr(train_woe)
  34. plt.figure(figsize=(12, 12))
  35. sns.heatmap(train_corr, vmax=1, square=True, cmap='RdBu', annot=True)
  36. plt.title('Variables Correlation', fontsize=15)
  37. plt.yticks(rotation=0)
  38. plt.xticks(rotation=90)
  39. path = self.data_process_config.f_get_save_path(f"var_corr.png")
  40. plt.savefig(path)
  41. return path
  42. def _f_save_var_trend(self, bins, x_columns_candidate, prefix):
  43. image_path_list = []
  44. for k in x_columns_candidate:
  45. bin_df = bins[k]
  46. # bin_df["bin"] = bin_df["bin"].apply(lambda x: re.sub(r"(\d+\.\d+)",
  47. # lambda m: "{:.2f}".format(float(m.group(0))), x))
  48. sc.woebin_plot(bin_df)
  49. path = self.data_process_config.f_get_save_path(f"{prefix}_{k}.png")
  50. plt.savefig(path)
  51. image_path_list.append(path)
  52. return image_path_list
  53. def _f_get_bins_by_breaks(self, data: pd.DataFrame, candidate_dict: Dict[str, CandidateFeatureEntity],
  54. y_column=None):
  55. y_column = self.data_process_config.y_column if y_column is None else y_column
  56. special_values = self.data_process_config.special_values
  57. x_columns_candidate = list(candidate_dict.keys())
  58. breaks_list = {}
  59. for column, candidate in candidate_dict.items():
  60. breaks_list[column] = candidate.breaks_list
  61. bins = sc.woebin(data[x_columns_candidate + [y_column]], y=y_column, breaks_list=breaks_list,
  62. special_values=special_values, print_info=False)
  63. return bins
  64. def _f_corr_filter(self, data: DataSplitEntity, candidate_dict: Dict[str, CandidateFeatureEntity]) -> List[str]:
  65. # 相关性剔除变量
  66. corr_threshold = self.data_process_config.corr_threshold
  67. train_data = data.train_data
  68. x_columns_candidate = list(candidate_dict.keys())
  69. bins = self._f_get_bins_by_breaks(train_data, candidate_dict)
  70. train_woe = sc.woebin_ply(train_data[x_columns_candidate], bins, print_info=False)
  71. corr_df = f_get_corr(train_woe)
  72. corr_dict = corr_df.to_dict()
  73. for column, corr in corr_dict.items():
  74. column = column.replace("_woe", "")
  75. if column not in x_columns_candidate:
  76. continue
  77. for challenger_column, challenger_corr in corr.items():
  78. challenger_column = challenger_column.replace("_woe", "")
  79. if challenger_corr < corr_threshold or column == challenger_column \
  80. or challenger_column not in x_columns_candidate:
  81. continue
  82. iv_max = candidate_dict[column].iv_max
  83. challenger_iv_max = candidate_dict[challenger_column].iv_max
  84. if iv_max > challenger_iv_max:
  85. x_columns_candidate.remove(challenger_column)
  86. else:
  87. x_columns_candidate.remove(column)
  88. break
  89. return x_columns_candidate
  90. def _f_wide_filter(self, data: DataSplitEntity) -> Dict:
  91. # 粗筛变量
  92. train_data = data.train_data
  93. test_data = data.test_data
  94. special_values = self.data_process_config.special_values
  95. breaks_list = self.data_process_config.breaks_list.copy()
  96. y_column = self.data_process_config.y_column
  97. iv_threshold_wide = self.data_process_config.iv_threshold_wide
  98. x_columns_candidate = self.data_process_config.x_columns_candidate
  99. if x_columns_candidate is None or len(x_columns_candidate) == 0:
  100. x_columns_candidate = train_data.columns.tolist()
  101. if y_column in x_columns_candidate:
  102. x_columns_candidate.remove(y_column)
  103. bins_train = sc.woebin(train_data[x_columns_candidate + [y_column]], y=y_column, bin_num_limit=5,
  104. special_values=special_values, breaks_list=breaks_list, print_info=False)
  105. for column, bin in bins_train.items():
  106. breaks_list[column] = list(bin['breaks'])
  107. bins_test = None
  108. if test_data is not None and len(test_data) != 0:
  109. bins_test = sc.woebin(test_data[x_columns_candidate + [y_column]], y=y_column,
  110. special_values=special_values, breaks_list=breaks_list, print_info=False)
  111. bins_iv_dict = {}
  112. for column, bin_train in bins_train.items():
  113. train_iv = bin_train['total_iv'][0]
  114. test_iv = 0
  115. if bins_test is not None:
  116. bin_test = bins_test[column]
  117. test_iv = bin_test['total_iv'][0]
  118. iv_max = train_iv + test_iv
  119. if train_iv < iv_threshold_wide:
  120. continue
  121. bins_iv_dict[column] = {"iv_max": iv_max, "breaks_list": breaks_list[column]}
  122. return bins_iv_dict
  123. def _f_get_best_bins_numeric(self, data: DataSplitEntity, x_column: str):
  124. # 贪婪搜索【训练集】及【测试集】加起来【iv】值最高的且【单调】的分箱
  125. interval = self.data_process_config.bin_search_interval
  126. iv_threshold = self.data_process_config.iv_threshold
  127. special_values = self.data_process_config.get_special_values(x_column)
  128. breaks_list = self.data_process_config.get_breaks_list(x_column)
  129. y_column = self.data_process_config.y_column
  130. sample_rate = self.data_process_config.sample_rate
  131. format_bin = self.data_process_config.format_bin
  132. pos_neg_cnt = self.data_process_config.pos_neg_cnt
  133. def _n0(x):
  134. return sum(x == 0)
  135. def _n1(x):
  136. return sum(x == 1)
  137. def _f_distribute_balls(balls, boxes):
  138. # 计算在 balls - 1 个空位中放入 boxes - 1 个隔板的方法数
  139. total_ways = combinations_with_replacement(range(balls + boxes - 1), boxes - 1)
  140. distribute_list = []
  141. # 遍历所有可能的隔板位置
  142. for combo in total_ways:
  143. # 根据隔板位置分配球
  144. distribution = [0] * boxes
  145. start = 0
  146. for i, divider in enumerate(combo):
  147. distribution[i] = divider - start + 1
  148. start = divider + 1
  149. distribution[-1] = balls - start # 最后一个箱子的球数
  150. # 确保每个箱子至少有一个球
  151. if all(x > 0 for x in distribution):
  152. distribute_list.append(distribution)
  153. return distribute_list
  154. def _get_sv_bins(df, x_column, y_column, special_values):
  155. # special_values_bins
  156. sv_bin_list = []
  157. for special in special_values:
  158. dtm = df[df[x_column] == special]
  159. if len(dtm) != 0:
  160. dtm['bin'] = [str(special)] * len(dtm)
  161. binning = dtm.groupby(['bin'], group_keys=False)[y_column].agg(
  162. [_n0, _n1]).reset_index().rename(columns={'_n0': 'good', '_n1': 'bad'})
  163. binning['is_special_values'] = [True] * len(binning)
  164. sv_bin_list.append(binning)
  165. return sv_bin_list
  166. def _get_bins(df, x_column, y_column, breaks_list):
  167. dtm = pd.DataFrame({'y': df[y_column], 'value': df[x_column]})
  168. bstbrks = [-np.inf] + breaks_list + [np.inf]
  169. labels = ['[{},{})'.format(bstbrks[i], bstbrks[i + 1]) for i in range(len(bstbrks) - 1)]
  170. dtm.loc[:, 'bin'] = pd.cut(dtm['value'], bstbrks, right=False, labels=labels)
  171. dtm['bin'] = dtm['bin'].astype(str)
  172. bins = dtm.groupby(['bin'], group_keys=False)['y'].agg([_n0, _n1]) \
  173. .reset_index().rename(columns={'_n0': 'good', '_n1': 'bad'})
  174. bins['is_special_values'] = [False] * len(bins)
  175. return bins
  176. def _calculation_iv(bins, judge_monto=True, pos_neg_cnt=1):
  177. bins['count'] = bins['good'] + bins['bad']
  178. bins['badprob'] = bins['bad'] / bins['count']
  179. # 单调性判断
  180. bad_prob = bins[bins['is_special_values'] == False]['badprob'].values.tolist()
  181. if judge_monto and not f_judge_monto(bad_prob, pos_neg_cnt):
  182. return -1
  183. # 计算iv
  184. infovalue = pd.DataFrame({'good': bins['good'], 'bad': bins['bad']}) \
  185. .replace(0, 0.9) \
  186. .assign(
  187. DistrBad=lambda x: x.bad / sum(x.bad),
  188. DistrGood=lambda x: x.good / sum(x.good)
  189. ) \
  190. .assign(iv=lambda x: (x.DistrBad - x.DistrGood) * np.log(x.DistrBad / x.DistrGood)) \
  191. .iv
  192. bins['bin_iv'] = infovalue
  193. bins['total_iv'] = bins['bin_iv'].sum()
  194. iv = bins['total_iv'].values[0]
  195. return iv
  196. def _f_sampling(distribute_list: list, sample_rate: float):
  197. # 采样,完全贪婪搜索耗时太长
  198. sampled_list = distribute_list[::int(1 / sample_rate)]
  199. return sampled_list
  200. train_data = data.train_data
  201. train_data_filter = train_data[~train_data[x_column].isin(special_values)]
  202. train_data_filter = train_data_filter.sort_values(by=x_column, ascending=True)
  203. train_data_x = train_data_filter[x_column]
  204. train_data_x_describe = train_data_x.describe(percentiles=[0.1, 0.9])
  205. test_data = data.test_data
  206. test_data_filter = None
  207. if test_data is not None and len(test_data) != 0:
  208. test_data_filter = test_data[~test_data[x_column].isin(special_values)]
  209. test_data_filter = test_data_filter.sort_values(by=x_column, ascending=True)
  210. # 构造数据切分点
  211. # 计算 2 - 5 箱的情况
  212. distribute_list = []
  213. points_list = []
  214. for bin_num in list(range(2, 6)):
  215. distribute_list_cache = _f_distribute_balls(int(1 / interval), bin_num)
  216. # 4箱及以上得采样,不然耗时太久
  217. sample_num = 1000 * sample_rate
  218. if sample_rate <= 0.15:
  219. sample_num *= 2
  220. if bin_num == 4 and len(distribute_list_cache) >= sample_num:
  221. distribute_list_cache = _f_sampling(distribute_list_cache, sample_num / len(distribute_list_cache))
  222. sample_num = 4000 * sample_rate
  223. if bin_num == 5 and len(distribute_list_cache) >= sample_num:
  224. distribute_list_cache = _f_sampling(distribute_list_cache, sample_num / len(distribute_list_cache))
  225. distribute_list.extend(distribute_list_cache)
  226. for distribute in distribute_list:
  227. point_list_cache = []
  228. point_percentile_list = [sum(distribute[0:idx + 1]) * interval for idx, _ in enumerate(distribute[0:-1])]
  229. for point_percentile in point_percentile_list:
  230. point = train_data_x.iloc[int(len(train_data_x) * point_percentile)]
  231. if format_bin:
  232. point = f_format_bin(train_data_x_describe, point)
  233. if point not in point_list_cache:
  234. point_list_cache.append(point)
  235. if point_list_cache not in points_list:
  236. points_list.append(point_list_cache)
  237. # IV与单调性过滤
  238. iv_max = 0
  239. breaks_list_target = None
  240. judge_monto = True
  241. if len(breaks_list) != 0:
  242. points_list = [breaks_list]
  243. judge_monto = False
  244. train_sv_bin_list = _get_sv_bins(train_data, x_column, y_column, special_values)
  245. test_sv_bin_list = None
  246. if test_data_filter is not None:
  247. test_sv_bin_list = _get_sv_bins(test_data, x_column, y_column, special_values)
  248. for point_list in points_list:
  249. train_bins = _get_bins(train_data_filter, x_column, y_column, point_list)
  250. # 与special_values合并计算iv
  251. for sv_bin in train_sv_bin_list:
  252. train_bins = pd.concat((train_bins, sv_bin))
  253. # _calculation_iv包含了单调性判断,并排除了特殊值
  254. train_iv = _calculation_iv(train_bins, judge_monto, pos_neg_cnt)
  255. # 只限制训练集的单调性与iv值大小
  256. if train_iv < iv_threshold:
  257. continue
  258. test_iv = 0
  259. if test_data_filter is not None:
  260. test_bins = _get_bins(test_data_filter, x_column, y_column, point_list)
  261. for sv_bin in test_sv_bin_list:
  262. test_bins = pd.concat((test_bins, sv_bin))
  263. test_iv = _calculation_iv(test_bins, judge_monto, pos_neg_cnt)
  264. iv = train_iv + test_iv
  265. if iv > iv_max:
  266. iv_max = iv
  267. breaks_list_target = point_list
  268. return iv_max, breaks_list_target
  269. def filter(self, data: DataSplitEntity, *args, **kwargs) -> Dict[str, CandidateFeatureEntity]:
  270. # 粗筛
  271. bins_iv_dict = self._f_wide_filter(data)
  272. x_columns_candidate = list(bins_iv_dict.keys())
  273. candidate_num = self.data_process_config.candidate_num
  274. candidate_dict: Dict[str, CandidateFeatureEntity] = {}
  275. for x_column in tqdm(x_columns_candidate):
  276. if is_numeric_dtype(data.train_data[x_column]):
  277. iv_max, breaks_list = self._f_get_best_bins_numeric(data, x_column)
  278. if breaks_list is None:
  279. continue
  280. candidate_dict[x_column] = CandidateFeatureEntity(x_column, breaks_list, iv_max)
  281. else:
  282. # 字符型暂时用scorecardpy来处理
  283. candidate_dict[x_column] = CandidateFeatureEntity(x_column, bins_iv_dict[x_column]["breaks_list"],
  284. bins_iv_dict[x_column]["iv_max"])
  285. # 相关性进一步剔除变量
  286. x_columns_candidate = self._f_corr_filter(data, candidate_dict)
  287. candidate_list: List[CandidateFeatureEntity] = []
  288. for x_column, v in candidate_dict.items():
  289. if x_column in x_columns_candidate:
  290. candidate_list.append(v)
  291. candidate_list.sort(key=lambda x: x.iv_max, reverse=True)
  292. candidate_list = candidate_list[0:candidate_num]
  293. candidate_dict = {}
  294. for candidate in candidate_list:
  295. candidate_dict[candidate.x_column] = candidate
  296. return candidate_dict
  297. def feature_generate(self, data: DataSplitEntity, candidate_dict: Dict[str, CandidateFeatureEntity], *args,
  298. **kwargs) -> DataPreparedEntity:
  299. train_data = data.train_data
  300. val_data = data.val_data
  301. test_data = data.test_data
  302. y_column = self.data_process_config.y_column
  303. jupyter = self.data_process_config.jupyter
  304. x_columns_candidate = list(candidate_dict.keys())
  305. bins = self._f_get_bins_by_breaks(train_data, candidate_dict)
  306. train_woe = sc.woebin_ply(train_data[x_columns_candidate], bins, print_info=False)
  307. train_data_feature = DataFeatureEntity(pd.concat((train_woe, train_data[y_column]), axis=1),
  308. train_woe.columns.tolist(), y_column)
  309. val_data_feature = None
  310. if val_data is not None and len(val_data) != 0:
  311. val_woe = sc.woebin_ply(val_data[x_columns_candidate], bins, print_info=False)
  312. val_data_feature = DataFeatureEntity(pd.concat((val_woe, val_data[y_column]), axis=1),
  313. train_woe.columns.tolist(), y_column)
  314. test_data_feature = None
  315. if test_data is not None and len(test_data) != 0:
  316. test_woe = sc.woebin_ply(test_data[x_columns_candidate], bins, print_info=False)
  317. test_data_feature = DataFeatureEntity(pd.concat((test_woe, test_data[y_column]), axis=1),
  318. train_woe.columns.tolist(), y_column)
  319. return DataPreparedEntity(train_data_feature, val_data_feature, test_data_feature, bins=bins,
  320. data_split_original=data, jupyter=jupyter)
  321. def feature_report(self, data: DataSplitEntity, candidate_dict: Dict[str, CandidateFeatureEntity],
  322. *args, **kwargs) -> Dict[str, MetricFucEntity]:
  323. y_column = self.data_process_config.y_column
  324. jupyter = self.data_process_config.jupyter
  325. x_columns_candidate = list(candidate_dict.keys())
  326. train_data = data.train_data
  327. test_data = data.test_data
  328. metric_value_dict = {}
  329. # 样本分布
  330. metric_value_dict["样本分布"] = MetricFucEntity(table=data.get_distribution(y_column), table_font_size=10,
  331. table_cell_width=3)
  332. # 变量iv及psi
  333. train_bins = self._f_get_bins_by_breaks(train_data, candidate_dict)
  334. train_iv = self._f_get_iv_by_bins(train_bins)
  335. if test_data is not None and len(test_data) != 0:
  336. # 计算psi仅需把y改成识别各自训练集测试集即可
  337. psi_df = pd.concat((train_data, test_data))
  338. psi_df["#target#"] = [1] * len(train_data) + [0] * len(test_data)
  339. psi = self._f_get_bins_by_breaks(psi_df, candidate_dict, y_column="#target#")
  340. psi = self._f_get_iv_by_bins(psi)
  341. psi.columns = ['变量', 'psi']
  342. train_iv = pd.merge(train_iv, psi, on="变量", how="left")
  343. # 变量趋势-测试集
  344. test_bins = self._f_get_bins_by_breaks(test_data, candidate_dict)
  345. image_path_list = self._f_save_var_trend(test_bins, x_columns_candidate, "test")
  346. metric_value_dict["变量趋势-测试集"] = MetricFucEntity(image_path=image_path_list, image_size=4)
  347. metric_value_dict["变量iv"] = MetricFucEntity(table=train_iv, table_font_size=10, table_cell_width=3)
  348. # 变量趋势-训练集
  349. image_path_list = self._f_save_var_trend(train_bins, x_columns_candidate, "train")
  350. metric_value_dict["变量趋势-训练集"] = MetricFucEntity(image_path=image_path_list, image_size=4)
  351. # 变量有效性
  352. train_woe = sc.woebin_ply(train_data[x_columns_candidate], train_bins, print_info=False)
  353. var_corr_image_path = self._f_get_var_corr_image(train_woe)
  354. # vif
  355. vif_df = f_get_ivf(train_woe)
  356. metric_value_dict["变量有效性"] = MetricFucEntity(image_path=var_corr_image_path, table=vif_df)
  357. if jupyter:
  358. from IPython import display
  359. display.display(metric_value_dict["样本分布"].table)
  360. # 打印变量iv
  361. display.display(metric_value_dict["变量iv"].table)
  362. # 打印vif
  363. display.display(metric_value_dict["变量有效性"].table)
  364. # 打印变量相关性
  365. f_display_images_by_side(metric_value_dict["变量有效性"].image_path, display, width=800)
  366. # 打印变量趋势
  367. var_trend_train = metric_value_dict["变量趋势-训练集"].image_path
  368. var_trend_test = None
  369. metric_test = metric_value_dict.get("变量趋势-测试集")
  370. if metric_test is not None:
  371. var_trend_test = metric_test.image_path
  372. f_display_images_by_side(var_trend_train, display, title="变量趋势训练集", image_path_list2=var_trend_test,
  373. title2="变量趋势测试集")
  374. # 打印breaks_list
  375. breaks_list = {}
  376. for x_column, feature in candidate_dict.items():
  377. breaks_list[x_column] = feature.breaks_list
  378. print("变量切分点:")
  379. print(json.dumps(breaks_list, ensure_ascii=False, indent=2))
  380. return metric_value_dict