strategy_iv.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378
  1. # -*- coding:utf-8 -*-
  2. """
  3. @author: yq
  4. @time: 2024/1/2
  5. @desc: iv值及单调性筛选类
  6. """
  7. from itertools import combinations_with_replacement
  8. from typing import List, Dict
  9. import matplotlib.pyplot as plt
  10. import numpy as np
  11. import pandas as pd
  12. import scorecardpy as sc
  13. import seaborn as sns
  14. from pandas.core.dtypes.common import is_numeric_dtype
  15. from tqdm import tqdm
  16. from entitys import DataSplitEntity, CandidateFeatureEntity, DataPreparedEntity, DataFeatureEntity, MetricFucEntity
  17. from .feature_utils import f_judge_monto, f_get_corr, f_get_ivf
  18. from .filter_strategy_base import FilterStrategyBase
  19. class StrategyIv(FilterStrategyBase):
  20. def __init__(self, *args, **kwargs):
  21. super().__init__(*args, **kwargs)
  22. def _f_get_iv_by_bins(self, bins) -> pd.DataFrame:
  23. iv = {key_: [round(value_['total_iv'].max(), 4)] for key_, value_ in bins.items()}
  24. iv = pd.DataFrame.from_dict(iv, orient='index', columns=['IV']).reset_index()
  25. iv = iv.sort_values('IV', ascending=False).reset_index(drop=True)
  26. iv.columns = ['变量', 'IV']
  27. return iv
  28. def _f_get_var_corr_image(self, train_woe):
  29. train_corr = f_get_corr(train_woe)
  30. plt.figure(figsize=(12, 12))
  31. sns.heatmap(train_corr, vmax=1, square=True, cmap='RdBu', annot=True)
  32. plt.title('Variables Correlation', fontsize=15)
  33. plt.yticks(rotation=0)
  34. plt.xticks(rotation=90)
  35. path = self.data_process_config.f_get_save_path(f"var_corr.png")
  36. plt.savefig(path)
  37. return path
  38. def _f_save_var_trend(self, bins, x_columns_candidate, prefix):
  39. image_path_list = []
  40. for k in x_columns_candidate:
  41. bin_df = bins[k]
  42. # bin_df["bin"] = bin_df["bin"].apply(lambda x: re.sub(r"(\d+\.\d+)",
  43. # lambda m: "{:.2f}".format(float(m.group(0))), x))
  44. sc.woebin_plot(bin_df)
  45. path = self.data_process_config.f_get_save_path(f"{prefix}_{k}.png")
  46. plt.savefig(path)
  47. image_path_list.append(path)
  48. return image_path_list
  49. def _f_get_bins_by_breaks(self, data: pd.DataFrame, candidate_dict: Dict[str, CandidateFeatureEntity],
  50. y_column=None):
  51. y_column = self.data_process_config.y_column if y_column is None else y_column
  52. special_values = self.data_process_config.special_values
  53. x_columns_candidate = list(candidate_dict.keys())
  54. breaks_list = {}
  55. for column, candidate in candidate_dict.items():
  56. breaks_list[column] = candidate.breaks_list
  57. bins = sc.woebin(data[x_columns_candidate + [y_column]], y=y_column, breaks_list=breaks_list,
  58. special_values=special_values)
  59. return bins
  60. def _f_corr_filter(self, data: DataSplitEntity, candidate_dict: Dict[str, CandidateFeatureEntity]) -> List[str]:
  61. # 相关性剔除变量
  62. corr_threshold = self.data_process_config.corr_threshold
  63. train_data = data.train_data
  64. x_columns_candidate = list(candidate_dict.keys())
  65. bins = self._f_get_bins_by_breaks(train_data, candidate_dict)
  66. train_woe = sc.woebin_ply(train_data[x_columns_candidate], bins)
  67. corr_df = f_get_corr(train_woe)
  68. corr_dict = corr_df.to_dict()
  69. for column, corr in corr_dict.items():
  70. column = column.replace("_woe", "")
  71. if column not in x_columns_candidate:
  72. continue
  73. for challenger_column, challenger_corr in corr.items():
  74. challenger_column = challenger_column.replace("_woe", "")
  75. if challenger_corr < corr_threshold or column == challenger_column \
  76. or challenger_column not in x_columns_candidate:
  77. continue
  78. iv_max = candidate_dict[column].iv_max
  79. challenger_iv_max = candidate_dict[challenger_column].iv_max
  80. if iv_max > challenger_iv_max:
  81. x_columns_candidate.remove(challenger_column)
  82. else:
  83. x_columns_candidate.remove(column)
  84. break
  85. return x_columns_candidate
  86. def _f_wide_filter(self, data: DataSplitEntity) -> Dict:
  87. # 粗筛变量
  88. train_data = data.train_data
  89. test_data = data.test_data
  90. special_values = self.data_process_config.special_values
  91. y_column = self.data_process_config.y_column
  92. iv_threshold_wide = self.data_process_config.iv_threshold_wide
  93. x_columns_candidate = self.data_process_config.x_columns_candidate
  94. if x_columns_candidate is None or len(x_columns_candidate) == 0:
  95. x_columns_candidate = train_data.columns.tolist()
  96. x_columns_candidate.remove(y_column)
  97. bins_train = sc.woebin(train_data[x_columns_candidate + [y_column]], y=y_column, special_values=special_values,
  98. bin_num_limit=5)
  99. breaks_list = {}
  100. for column, bin in bins_train.items():
  101. breaks_list[column] = list(bin['breaks'])
  102. bins_test = None
  103. if test_data is not None and len(test_data) != 0:
  104. bins_test = sc.woebin(test_data[x_columns_candidate + [y_column]], y=y_column, breaks_list=breaks_list,
  105. special_values=special_values
  106. )
  107. bins_iv_dict = {}
  108. for column, bin_train in bins_train.items():
  109. train_iv = bin_train['total_iv'][0]
  110. test_iv = 0
  111. if bins_test is not None:
  112. bin_test = bins_test[column]
  113. test_iv = bin_test['total_iv'][0]
  114. iv_max = train_iv + test_iv
  115. if train_iv < iv_threshold_wide:
  116. continue
  117. bins_iv_dict[column] = {"iv_max": iv_max, "breaks_list": breaks_list[column]}
  118. return bins_iv_dict
  119. def _f_get_best_bins_numeric(self, data: DataSplitEntity, x_column: str):
  120. # 贪婪搜索【训练集】及【测试集】加起来【iv】值最高的且【单调】的分箱
  121. interval = self.data_process_config.bin_search_interval
  122. iv_threshold = self.data_process_config.iv_threshold
  123. special_values = self.data_process_config.get_special_values(x_column)
  124. y_column = self.data_process_config.y_column
  125. sample_rate = self.data_process_config.sample_rate
  126. def _n0(x):
  127. return sum(x == 0)
  128. def _n1(x):
  129. return sum(x == 1)
  130. def _f_distribute_balls(balls, boxes):
  131. # 计算在 balls - 1 个空位中放入 boxes - 1 个隔板的方法数
  132. total_ways = combinations_with_replacement(range(balls + boxes - 1), boxes - 1)
  133. distribute_list = []
  134. # 遍历所有可能的隔板位置
  135. for combo in total_ways:
  136. # 根据隔板位置分配球
  137. distribution = [0] * boxes
  138. start = 0
  139. for i, divider in enumerate(combo):
  140. distribution[i] = divider - start + 1
  141. start = divider + 1
  142. distribution[-1] = balls - start # 最后一个箱子的球数
  143. # 确保每个箱子至少有一个球
  144. if all(x > 0 for x in distribution):
  145. distribute_list.append(distribution)
  146. return distribute_list
  147. def _get_sv_bins(df, x_column, y_column, special_values):
  148. # special_values_bins
  149. sv_bin_list = []
  150. for special in special_values:
  151. dtm = df[df[x_column] == special]
  152. if len(dtm) != 0:
  153. dtm['bin'] = [str(special)] * len(dtm)
  154. binning = dtm.groupby(['bin'], group_keys=False)[y_column].agg(
  155. [_n0, _n1]).reset_index().rename(columns={'_n0': 'good', '_n1': 'bad'})
  156. binning['is_special_values'] = [True] * len(binning)
  157. sv_bin_list.append(binning)
  158. return sv_bin_list
  159. def _get_bins(df, x_column, y_column, breaks_list):
  160. dtm = pd.DataFrame({'y': df[y_column], 'value': df[x_column]})
  161. bstbrks = [-np.inf] + breaks_list + [np.inf]
  162. labels = ['[{},{})'.format(bstbrks[i], bstbrks[i + 1]) for i in range(len(bstbrks) - 1)]
  163. dtm.loc[:, 'bin'] = pd.cut(dtm['value'], bstbrks, right=False, labels=labels)
  164. dtm['bin'] = dtm['bin'].astype(str)
  165. bins = dtm.groupby(['bin'], group_keys=False)['y'].agg([_n0, _n1]) \
  166. .reset_index().rename(columns={'_n0': 'good', '_n1': 'bad'})
  167. bins['is_special_values'] = [False] * len(bins)
  168. return bins
  169. def _calculation_iv(bins):
  170. bins['count'] = bins['good'] + bins['bad']
  171. bins['badprob'] = bins['bad'] / bins['count']
  172. # 单调性判断
  173. bad_prob = bins[bins['is_special_values'] == False]['badprob'].values.tolist()
  174. if not f_judge_monto(bad_prob):
  175. return -1
  176. # 计算iv
  177. infovalue = pd.DataFrame({'good': bins['good'], 'bad': bins['bad']}) \
  178. .replace(0, 0.9) \
  179. .assign(
  180. DistrBad=lambda x: x.bad / sum(x.bad),
  181. DistrGood=lambda x: x.good / sum(x.good)
  182. ) \
  183. .assign(iv=lambda x: (x.DistrBad - x.DistrGood) * np.log(x.DistrBad / x.DistrGood)) \
  184. .iv
  185. bins['bin_iv'] = infovalue
  186. bins['total_iv'] = bins['bin_iv'].sum()
  187. iv = bins['total_iv'].values[0]
  188. return iv
  189. def _f_sampling(distribute_list: list, sample_rate: float):
  190. # 采样,完全贪婪搜索耗时太长
  191. sampled_list = distribute_list[::int(1 / sample_rate)]
  192. return sampled_list
  193. train_data = data.train_data
  194. train_data_filter = train_data[~train_data[x_column].isin(special_values)]
  195. train_data_filter = train_data_filter.sort_values(by=x_column, ascending=True)
  196. train_data_x = train_data_filter[x_column]
  197. test_data = data.test_data
  198. test_data_filter = None
  199. if test_data is not None and len(test_data) != 0:
  200. test_data_filter = test_data[~test_data[x_column].isin(special_values)]
  201. test_data_filter = test_data_filter.sort_values(by=x_column, ascending=True)
  202. # 构造数据切分点
  203. # 计算 2 - 5 箱的情况
  204. distribute_list = []
  205. points_list = []
  206. for bin_num in list(range(2, 6)):
  207. distribute_list_cache = _f_distribute_balls(int(1 / interval), bin_num)
  208. # 4箱及以上得采样,不然耗时太久
  209. sample_num = 1000 * sample_rate
  210. if sample_rate <= 0.15:
  211. sample_num *= 2
  212. if bin_num == 4 and len(distribute_list_cache) >= sample_num:
  213. distribute_list_cache = _f_sampling(distribute_list_cache, sample_num / len(distribute_list_cache))
  214. sample_num = 4000 * sample_rate
  215. if bin_num == 5 and len(distribute_list_cache) >= sample_num:
  216. distribute_list_cache = _f_sampling(distribute_list_cache, sample_num / len(distribute_list_cache))
  217. distribute_list.extend(distribute_list_cache)
  218. for distribute in distribute_list:
  219. point_list_cache = []
  220. point_percentile_list = [sum(distribute[0:idx + 1]) * interval for idx, _ in enumerate(distribute[0:-1])]
  221. for point_percentile in point_percentile_list:
  222. point = train_data_x.iloc[int(len(train_data_x) * point_percentile)]
  223. if point not in point_list_cache:
  224. point_list_cache.append(point)
  225. if point_list_cache not in points_list:
  226. points_list.append(point_list_cache)
  227. # IV与单调性过滤
  228. iv_max = 0
  229. breaks_list = []
  230. train_sv_bin_list = _get_sv_bins(train_data, x_column, y_column, special_values)
  231. test_sv_bin_list = None
  232. if test_data_filter is not None:
  233. test_sv_bin_list = _get_sv_bins(test_data, x_column, y_column, special_values)
  234. for point_list in points_list:
  235. train_bins = _get_bins(train_data_filter, x_column, y_column, point_list)
  236. # 与special_values合并计算iv
  237. for sv_bin in train_sv_bin_list:
  238. train_bins = pd.concat((train_bins, sv_bin))
  239. train_iv = _calculation_iv(train_bins)
  240. # 只限制训练集的单调性与iv值大小
  241. if train_iv < iv_threshold:
  242. continue
  243. test_iv = 0
  244. if test_data_filter is not None:
  245. test_bins = _get_bins(test_data_filter, x_column, y_column, point_list)
  246. for sv_bin in test_sv_bin_list:
  247. test_bins = pd.concat((test_bins, sv_bin))
  248. test_iv = _calculation_iv(test_bins)
  249. iv = train_iv + test_iv
  250. if iv > iv_max:
  251. iv_max = iv
  252. breaks_list = point_list
  253. return iv_max, breaks_list
  254. def filter(self, data: DataSplitEntity, *args, **kwargs) -> Dict[str, CandidateFeatureEntity]:
  255. # 粗筛
  256. bins_iv_dict = self._f_wide_filter(data)
  257. x_columns_candidate = list(bins_iv_dict.keys())
  258. candidate_num = self.data_process_config.candidate_num
  259. candidate_dict: Dict[str, CandidateFeatureEntity] = {}
  260. for x_column in tqdm(x_columns_candidate):
  261. if is_numeric_dtype(data.train_data[x_column]):
  262. iv_max, breaks_list = self._f_get_best_bins_numeric(data, x_column)
  263. candidate_dict[x_column] = CandidateFeatureEntity(x_column, breaks_list, iv_max)
  264. else:
  265. # 字符型暂时用scorecardpy来处理
  266. candidate_dict[x_column] = CandidateFeatureEntity(x_column, bins_iv_dict[x_column]["breaks_list"],
  267. bins_iv_dict[x_column]["iv_max"])
  268. # 相关性进一步剔除变量
  269. x_columns_candidate = self._f_corr_filter(data, candidate_dict)
  270. candidate_list: List[CandidateFeatureEntity] = []
  271. for x_column, v in candidate_dict.items():
  272. if x_column in x_columns_candidate:
  273. candidate_list.append(v)
  274. candidate_list.sort(key=lambda x: x.iv_max, reverse=True)
  275. candidate_list = candidate_list[0:candidate_num]
  276. candidate_dict = {}
  277. for candidate in candidate_list:
  278. candidate_dict[candidate.x_column] = candidate
  279. return candidate_dict
  280. def feature_generate(self, data: DataSplitEntity, candidate_dict: Dict[str, CandidateFeatureEntity], *args,
  281. **kwargs) -> DataPreparedEntity:
  282. train_data = data.train_data
  283. val_data = data.val_data
  284. test_data = data.test_data
  285. y_column = self.data_process_config.y_column
  286. x_columns_candidate = list(candidate_dict.keys())
  287. bins = self._f_get_bins_by_breaks(train_data, candidate_dict)
  288. train_woe = sc.woebin_ply(train_data[x_columns_candidate], bins)
  289. train_data_feature = DataFeatureEntity(pd.concat((train_woe, train_data[y_column]), axis=1),
  290. train_woe.columns.tolist(), y_column)
  291. val_data_feature = None
  292. if val_data is not None and len(val_data) != 0:
  293. val_woe = sc.woebin_ply(val_data[x_columns_candidate], bins)
  294. val_data_feature = DataFeatureEntity(pd.concat((val_woe, val_data[y_column]), axis=1),
  295. train_woe.columns.tolist(), y_column)
  296. test_data_feature = None
  297. if test_data is not None and len(test_data) != 0:
  298. test_woe = sc.woebin_ply(test_data[x_columns_candidate], bins)
  299. test_data_feature = DataFeatureEntity(pd.concat((test_woe, test_data[y_column]), axis=1),
  300. train_woe.columns.tolist(), y_column)
  301. return DataPreparedEntity(train_data_feature, val_data_feature, test_data_feature, bins=bins,
  302. data_split_original=data)
  303. def feature_report(self, data: DataSplitEntity, candidate_dict: Dict[str, CandidateFeatureEntity], *args,
  304. **kwargs) -> Dict[str, MetricFucEntity]:
  305. y_column = self.data_process_config.y_column
  306. x_columns_candidate = list(candidate_dict.keys())
  307. train_data = data.train_data
  308. test_data = data.test_data
  309. metric_value_dict = {}
  310. # 样本分布
  311. metric_value_dict["样本分布"] = MetricFucEntity(table=data.get_distribution(y_column), table_font_size=10,
  312. table_cell_width=3)
  313. # 变量iv及psi
  314. train_bins = self._f_get_bins_by_breaks(train_data, candidate_dict)
  315. train_iv = self._f_get_iv_by_bins(train_bins)
  316. if test_data is not None and len(test_data) != 0:
  317. # 计算psi仅需把y改成识别各自训练集测试集即可
  318. psi_df = pd.concat((train_data, test_data))
  319. psi_df["#target#"] = [1] * len(train_data) + [0] * len(test_data)
  320. psi = self._f_get_bins_by_breaks(psi_df, candidate_dict, y_column="#target#")
  321. psi = self._f_get_iv_by_bins(psi)
  322. psi.columns = ['变量', 'psi']
  323. train_iv = pd.merge(train_iv, psi, on="变量", how="left")
  324. # 变量趋势-测试集
  325. test_bins = self._f_get_bins_by_breaks(test_data, candidate_dict)
  326. image_path_list = self._f_save_var_trend(test_bins, x_columns_candidate, "test")
  327. metric_value_dict["变量趋势-测试集"] = MetricFucEntity(image_path=image_path_list, image_size=4)
  328. metric_value_dict["变量iv"] = MetricFucEntity(table=train_iv, table_font_size=10, table_cell_width=3)
  329. # 变量趋势-训练集
  330. image_path_list = self._f_save_var_trend(train_bins, x_columns_candidate, "train")
  331. metric_value_dict["变量趋势-训练集"] = MetricFucEntity(image_path=image_path_list, image_size=4)
  332. # 变量有效性
  333. train_woe = sc.woebin_ply(train_data[x_columns_candidate], train_bins)
  334. var_corr_image_path = self._f_get_var_corr_image(train_woe)
  335. # vif
  336. vif_df = f_get_ivf(train_woe)
  337. metric_value_dict["变量有效性"] = MetricFucEntity(image_path=var_corr_image_path, table=vif_df)
  338. return metric_value_dict