123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124 |
- # -*- coding:utf-8 -*-
- """
- @author: yq
- @time: 2023/12/28
- @desc: 特征工具类
- """
- import pandas as pd
- import toad as td
- from sklearn.preprocessing import KBinsDiscretizer
- from entitys import DataSplitEntity
- from enums import BinsStrategyEnum
- def f_get_bins(data: DataSplitEntity, feat: str, strategy: str = 'quantile', nbins: int = 10) -> pd.DataFrame:
- # 等频分箱
- if strategy == BinsStrategyEnum.QUANTILE.value:
- kbin_encoder = KBinsDiscretizer(n_bins=nbins, encode='ordinal', strategy='quantile')
- feature_binned = kbin_encoder.fit_transform(data[feat])
- return feature_binned.astype(int).astype(str)
- # 等宽分箱
- if strategy == BinsStrategyEnum.WIDTH.value:
- bin_width = (data.train_data()[feat].max() - data.train_data()[feat].min()) / nbins
- return pd.cut(data.train_data()[feat], bins=nbins, labels=[f'Bin_{i}' for i in range(1, nbins + 1)])
- # 使用toad分箱
- '''
- c = td.transfrom.Combiner()
- # method参数需要根据toad指定的几种方法名称选择
- c.fit(data, y = 'target', method = strategy, min_samples=None, n_bins = nbins, empty_separate = False)
- # 返回toad分箱combiner,用于训练集和测试集的分箱
- # 可使用c.export()[feature]查看某一特征的分箱临界值
- return c
- '''
- # 此函数入参应为scorecardpy进行woebin函数转换后的dataframe
- def f_get_bins_display(bins_info: pd.DataFrame) -> pd.DataFrame:
- df_list = []
- for col, bin_data in bins_info.items():
- tmp_df = pd.DataFrame(bin_data)
- df_list.append(tmp_df)
- result_df = pd.concat(df_list, ignore_index=True)
- total_bad = result_df['bad'].sum()
- total_cnt = result_df['count'].sum()
- # 整体的坏样本率
- br_overall = total_bad / total_cnt
- result_df['lift'] = result_df['badprob'] / br_overall
- result_df = \
- result_df.sort_values(['total_iv', 'variable'], ascending=False).set_index(['variable', 'total_iv', 'bin']) \
- [['count_distr', 'count', 'good', 'bad', 'badprob', 'lift', 'bin_iv', 'woe']]
- return result_df.style.format(subset=['count', 'good', 'bad'], precision=0).format(
- subset=['count_distr', 'bad', 'lift',
- 'badprob', 'woe', 'bin_iv'], precision=4).bar(subset=['badprob', 'bin_iv', 'lift'],
- color=['#d65f58', '#5fbb7a'])
- # 此函数筛除变量分箱不单调或非U型的变量
- def f_bins_filter(bins: pd.DataFrame, cols: list) -> list:
- result_cols = []
- # 遍历原始变量列表
- for tmp_col in cols:
- tmp_br = bins[tmp_col]['bad_prob'].values.tolist()
- tmp_len = len(tmp_br)
- if tmp_len <= 2:
- result_cols.append(tmp_col)
- else:
- tmp_judge = f_judge_monto(tmp_br)
- # f_judge_monto 函数返回1表示list单调,0表示非单调
- if tmp_judge:
- result_cols.append(tmp_col)
- return result_cols
- # 此函数判断list的单调性,允许至多N次符号变化
- def f_judge_monto(bd_list: list, pos_neg_cnt: int = 1) -> int:
- start_tr = bd_list[1] - bd_list[0]
- tmp_len = len(bd_list)
- pos_neg_flag = 0
- for i in range(2, tmp_len):
- tmp_tr = bd_list[i] - bd_list[i - 1]
- # 后一位bad_rate减前一位bad_rate,保证bad_rate的单调性
- # 记录符号变化, 允许 最多一次符号变化,即U型分布
- if (tmp_tr >= 0 and start_tr >= 0) or (tmp_tr <= 0 and start_tr <= 0):
- # 满足趋势保持,查看下一位
- continue
- else:
- # 记录一次符号变化
- start_tr = tmp_tr
- pos_neg_flag += 1
- if pos_neg_flag > pos_neg_cnt:
- return False
- # 记录满足趋势要求的变量
- if pos_neg_flag <= pos_neg_cnt:
- return True
- return False
- def f_get_woe(data: DataSplitEntity, c: td.transform.Combiner, to_drop: list) -> pd.DataFrame:
- transer = td.transform.WOETransformer()
- # 根据训练数据来训练woe转换器,并选择目标变量和排除变量
- train_woe = transer.fit_transform(c.transform(data.train_data()), data.train_data()['target'],
- exclude=to_drop + ['target'])
- test_woe = transer.transform(c.transfrom(data.test_data()))
- oot_woe = transer.transform(c.transform(data.val_data()))
- return train_woe, test_woe, oot_woe
- def f_get_iv(data: DataSplitEntity) -> pd.DataFrame:
- # 计算前,先排除掉不需要计算IV的cols
- return td.quality(data, 'target', iv_only=True)
- def f_get_psi(train_data: DataSplitEntity, oot_data: DataSplitEntity) -> pd.DataFrame:
- # 计算前,先排除掉不需要的cols
- return td.metrics.PSI(train_data, oot_data)
- def f_get_corr(data: pd.DataFrame, meth: str = 'spearman') -> pd.DataFrame:
- return data.corr(method=meth)
- def f_get_ivf(data: DataSplitEntity) -> pd.DataFrame:
- pass
|