123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384 |
- # -*- coding: utf-8 -*-
- """
- @author: yq
- @time: 2024/11/1
- @desc:
- """
- import pandas as pd
- from commom import f_format_float
- class DataFeatureEntity():
- """
- 数据特征准备完毕
- """
- def __init__(self, data_x: pd.DataFrame, data_y: pd.Series):
- self._data_x = data_x
- self._data_y = data_y
- @property
- def x_columns(self):
- return self._data_x.columns.tolist()
- @property
- def data_x(self):
- return self._data_x
- @property
- def data_y(self):
- return self._data_y
- def get_odds0(self):
- train_good_len = len(self._data_y[self._data_y == 0])
- train_bad_len = len(self._data_y[self._data_y == 1])
- odds0 = train_bad_len / train_good_len
- return odds0
- class DataSplitEntity():
- """
- 初始数据训练集测试集划分
- """
- def __init__(self, train_data: pd.DataFrame, test_data: pd.DataFrame):
- self._train_data = train_data
- self._test_data = test_data
- @property
- def train_data(self):
- return self._train_data
- @property
- def test_data(self):
- return self._test_data
- def get_distribution(self, y_column) -> pd.DataFrame:
- df = pd.DataFrame()
- train_data_len = len(self._train_data)
- train_bad_len = len(self._train_data[self._train_data[y_column] == 1])
- train_bad_rate = f"{f_format_float(train_bad_len / train_data_len * 100, 2)}%"
- test_data_len = len(self._test_data)
- test_bad_len = len(self._test_data[self._test_data[y_column] == 1])
- test_bad_rate = f"{f_format_float(test_bad_len / test_data_len * 100, 2)}%"
- total = train_data_len + test_data_len
- bad_total = train_bad_len + test_bad_len
- bad_rate = f"{f_format_float(bad_total / total * 100, 2)}%"
- df["样本"] = ["训练集", "测试集", "合计"]
- df["样本数"] = [train_data_len, test_data_len, total]
- df["样本占比"] = [f"{f_format_float(train_data_len / total * 100, 2)}%",
- f"{f_format_float(test_data_len / total * 100, 2)}%", "100%"]
- df["坏样本数"] = [train_bad_len, test_bad_len, bad_total]
- df["坏样本比例"] = [train_bad_rate, test_bad_rate, bad_rate]
- return df
- if __name__ == "__main__":
- pass
|