123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- # -*- coding:utf-8 -*-
- """
- @author: yq
- @time: 2023/12/28
- @desc: 特征工具类
- """
- import numpy as np
- import pandas as pd
- import scorecardpy as sc
- from statsmodels.stats.outliers_influence import variance_inflation_factor as vif
- FORMAT_DICT = {
- # 比例类 -1 - 1
- "bin_rate1": np.arange(-1, 1 + 0.1, 0.1),
- # 次数类1 0 -10
- "bin_cnt1": np.arange(0, 11, 1),
- # 次数类2 0 - 20
- "bin_cnt2": [0, 1, 2, 3, 4, 5, 8, 10, 15, 20],
- # 次数类3 0 - 50
- "bin_cnt3": [0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50],
- # 次数类4 0 - 100
- "bin_cnt4": [0, 3, 6, 10, 15, 20, 30, 40, 50, 100],
- # 金额类1 0 - 1w
- "bin_amt1": np.arange(0, 1.1e4, 1e3),
- # 金额类2 0 - 5w
- "bin_amt2": np.arange(0, 5.5e4, 5e3),
- # 金额类3 0 - 10w
- "bin_amt3": np.arange(0, 11e4, 1e4),
- # 金额类4 0 - 20w
- "bin_amt4": [0, 1e4, 2e4, 3e4, 4e4, 5e4, 8e4, 10e4, 15e4, 20e4],
- # 金额类5 0 - 100w
- "bin_amt5": [0, 5e4, 10e4, 15e4, 20e4, 25e4, 30e4, 40e4, 50e4, 100e4],
- # 年龄类
- "bin_age": [20, 25, 30, 35, 40, 45, 50, 55, 60, 65],
- }
- # 粗分箱
- def f_format_bin(data_describe: pd.Series, raw_v):
- percent10 = data_describe["10%"]
- percent90 = data_describe["90%"]
- format_v = raw_v
- # 筛选最合适的标准化分箱节点
- bin = None
- for k, v_list in FORMAT_DICT.items():
- bin_min = min(v_list)
- bin_max = max(v_list)
- if percent10 >= bin_min and percent90 <= bin_max:
- if bin is None:
- bin = (k, bin_max)
- elif bin[1] > bin_max:
- bin = (k, bin_max)
- if bin is None:
- return format_v
- # 选择分箱内适合的切分点
- v_list = FORMAT_DICT[bin[0]]
- for idx in range(1, len(v_list)):
- v_left = v_list[idx - 1]
- v_right = v_list[idx]
- # 就近原则
- if v_left <= raw_v <= v_right:
- format_v = v_right if (raw_v - v_left) - (v_right - raw_v) > 0 else v_left
- if format_v not in v_list:
- if format_v > v_list[-1]:
- format_v = v_list[-1]
- if format_v < v_list[0]:
- format_v = v_list[0]
- return format_v
- # 此函数判断list的单调性,允许至多N次符号变化
- def f_judge_monto(bd_list: list, pos_neg_cnt: int = 1) -> int:
- start_tr = bd_list[1] - bd_list[0]
- tmp_len = len(bd_list)
- pos_neg_flag = 0
- for i in range(2, tmp_len):
- tmp_tr = bd_list[i] - bd_list[i - 1]
- # 后一位bad_rate减前一位bad_rate,保证bad_rate的单调性
- # 记录符号变化, 允许 最多一次符号变化,即U型分布
- if (tmp_tr >= 0 and start_tr >= 0) or (tmp_tr <= 0 and start_tr <= 0):
- # 满足趋势保持,查看下一位
- continue
- else:
- # 记录一次符号变化
- start_tr = tmp_tr
- pos_neg_flag += 1
- if pos_neg_flag > pos_neg_cnt:
- return False
- # 记录满足趋势要求的变量
- if pos_neg_flag <= pos_neg_cnt:
- return True
- return False
- def f_get_corr(data: pd.DataFrame, meth: str = 'spearman') -> pd.DataFrame:
- return data.corr(method=meth)
- def f_get_ivf(data: pd.DataFrame) -> pd.DataFrame:
- if len(data.columns.to_list()) <= 1:
- return None
- vif_v = [vif(data.values, data.columns.get_loc(i)) for i in data.columns]
- vif_df = pd.DataFrame()
- vif_df["变量"] = data.columns
- vif_df['vif'] = vif_v
- return vif_df
- def f_calcu_model_ks(data, y_column, sort_ascending):
- var_ks = data.groupby('MODEL_SCORE_BIN')[y_column].agg([len, np.sum]).sort_index(ascending=sort_ascending)
- var_ks.columns = ['样本数', '坏样本数']
- var_ks['好样本数'] = var_ks['样本数'] - var_ks['坏样本数']
- var_ks['坏样本比例'] = (var_ks['坏样本数'] / var_ks['样本数']).round(4)
- var_ks['样本数比例'] = (var_ks['样本数'] / var_ks['样本数'].sum()).round(4)
- var_ks['总坏样本数'] = var_ks['坏样本数'].sum()
- var_ks['总好样本数'] = var_ks['好样本数'].sum()
- var_ks['平均坏样本率'] = (var_ks['总坏样本数'] / var_ks['样本数'].sum()).round(4)
- var_ks['累计坏样本数'] = var_ks['坏样本数'].cumsum()
- var_ks['累计好样本数'] = var_ks['好样本数'].cumsum()
- var_ks['累计样本数'] = var_ks['样本数'].cumsum()
- var_ks['累计坏样本比例'] = (var_ks['累计坏样本数'] / var_ks['总坏样本数']).round(4)
- var_ks['累计好样本比例'] = (var_ks['累计好样本数'] / var_ks['总好样本数']).round(4)
- var_ks['KS'] = (var_ks['累计坏样本比例'] - var_ks['累计好样本比例']).round(4)
- var_ks['LIFT'] = ((var_ks['累计坏样本数'] / var_ks['累计样本数']) / var_ks['平均坏样本率']).round(4)
- return var_ks.reset_index()
- def f_get_model_score_bin(df, card, bins=None):
- train_score = sc.scorecard_ply(df, card, print_step=0)
- df['score'] = train_score
- if bins is None:
- _, bins = pd.qcut(df['score'], q=10, retbins=True, duplicates="drop")
- bins = list(bins)
- bins[0] = -np.inf
- bins[-1] = np.inf
- score_bins = pd.cut(df['score'], bins=bins)
- df['MODEL_SCORE_BIN'] = score_bins.astype(str).values
- return df, bins
- def f_calcu_model_psi(df_train, df_test):
- tmp1 = df_train.groupby('MODEL_SCORE_BIN')['MODEL_SCORE_BIN'].agg(['count']).sort_index(ascending=True)
- tmp1['样本数比例'] = (tmp1['count'] / tmp1['count'].sum()).round(4)
- tmp2 = df_test.groupby('MODEL_SCORE_BIN')['MODEL_SCORE_BIN'].agg(['count']).sort_index(ascending=True)
- tmp2['样本数比例'] = (tmp2['count'] / tmp2['count'].sum()).round(4)
- psi = ((tmp1['样本数比例'] - tmp2['样本数比例']) * np.log(tmp1['样本数比例'] / tmp2['样本数比例'])).round(4)
- psi = psi.reset_index()
- psi = psi.rename(columns={"样本数比例": "psi"})
- psi['训练样本数'] = list(tmp1['count'])
- psi['测试样本数'] = list(tmp2['count'])
- psi['训练样本数比例'] = list(tmp1['样本数比例'])
- psi['测试样本数比例'] = list(tmp2['样本数比例'])
- return psi
|