data_feaure_entity.py 3.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130
  1. # -*- coding: utf-8 -*-
  2. """
  3. @author: yq
  4. @time: 2024/11/1
  5. @desc:
  6. """
  7. import pandas as pd
  8. from commom import f_format_float
  9. class CandidateFeatureEntity():
  10. """
  11. 经过特征筛选后的特征信息
  12. """
  13. def __init__(self, x_column: str, breaks_list: list = None, iv_max: float = None):
  14. self._x_column = x_column
  15. self._breaks_list = breaks_list
  16. self._iv_max = iv_max
  17. @property
  18. def x_column(self):
  19. return self._x_column
  20. @property
  21. def breaks_list(self):
  22. return self._breaks_list
  23. @property
  24. def iv_max(self):
  25. return self._iv_max
  26. class DataFeatureEntity():
  27. """
  28. 数据特征准备完毕
  29. """
  30. def __init__(self, data: pd.DataFrame, x_columns: list, y_column: str):
  31. self._data = data
  32. self._x_columns = x_columns
  33. self._y_column = y_column
  34. @property
  35. def data(self):
  36. return self._data
  37. @property
  38. def x_columns(self):
  39. return self._x_columns
  40. @property
  41. def y_column(self):
  42. return self._y_column
  43. def get_Xdata(self):
  44. return self._data[self._x_columns]
  45. def get_Ydata(self):
  46. return self._data[self._y_column]
  47. class DataPreparedEntity():
  48. """
  49. 训练集测试集特征准备完毕
  50. """
  51. def __init__(self, train_data: DataFeatureEntity, val_data: DataFeatureEntity, test_data: DataFeatureEntity):
  52. self._train_data = train_data
  53. self._val_data = val_data
  54. self._test_data = test_data
  55. @property
  56. def train_data(self):
  57. return self._train_data
  58. @property
  59. def val_data(self):
  60. return self._val_data
  61. @property
  62. def test_data(self):
  63. return self._test_data
  64. class DataSplitEntity():
  65. """
  66. 初始数据训练集测试集划分
  67. """
  68. def __init__(self, train_data: pd.DataFrame, val_data: pd.DataFrame, test_data: pd.DataFrame):
  69. self._train_data = train_data
  70. self._val_data = val_data
  71. self._test_data = test_data
  72. @property
  73. def train_data(self):
  74. return self._train_data
  75. @property
  76. def val_data(self):
  77. return self._val_data
  78. @property
  79. def test_data(self):
  80. return self._test_data
  81. def get_distribution(self, y_column) -> pd.DataFrame:
  82. df = pd.DataFrame()
  83. train_data_len = len(self._train_data)
  84. test_data_len = len(self._test_data)
  85. total = train_data_len + test_data_len
  86. train_bad_len = len(self._train_data[self._train_data[y_column] == 1])
  87. test_bad_len = len(self._test_data[self._test_data[y_column] == 1])
  88. bad_total = train_bad_len + test_bad_len
  89. df["样本"] = ["训练集", "测试集", "合计"]
  90. df["样本数"] = [train_data_len, test_data_len, total]
  91. df["样本占比"] = [f"{f_format_float(train_data_len / total * 100)}%",
  92. f"{f_format_float(test_data_len / total * 100)}%", "100%"]
  93. df["坏样本数"] = [train_bad_len, test_bad_len, bad_total]
  94. df["坏样本比例"] = [f"{f_format_float(train_bad_len / train_data_len * 100)}%",
  95. f"{f_format_float(test_bad_len / test_data_len * 100)}%",
  96. f"{f_format_float(bad_total / total * 100)}%"]
  97. return df
  98. if __name__ == "__main__":
  99. pass