strategy_iv.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369
  1. # -*- coding:utf-8 -*-
  2. """
  3. @author: yq
  4. @time: 2024/1/2
  5. @desc: iv值及单调性筛选类
  6. """
  7. from itertools import combinations_with_replacement
  8. from typing import List, Dict
  9. import matplotlib.pyplot as plt
  10. import numpy as np
  11. import pandas as pd
  12. import scorecardpy as sc
  13. import seaborn as sns
  14. from pandas.core.dtypes.common import is_numeric_dtype
  15. from entitys import DataSplitEntity, CandidateFeatureEntity, DataPreparedEntity, DataFeatureEntity, MetricFucEntity
  16. from .feature_utils import f_judge_monto, f_get_corr
  17. from .filter_strategy_base import FilterStrategyBase
  18. plt.rcParams['figure.figsize'] = (8, 8)
  19. class StrategyIv(FilterStrategyBase):
  20. def __init__(self, *args, **kwargs):
  21. super().__init__(*args, **kwargs)
  22. def _f_save_var_trend(self, bins, x_columns_candidate, prefix):
  23. image_path_list = []
  24. for k in x_columns_candidate:
  25. bin_df = bins[k]
  26. # bin_df["bin"] = bin_df["bin"].apply(lambda x: re.sub(r"(\d+\.\d+)",
  27. # lambda m: "{:.2f}".format(float(m.group(0))), x))
  28. sc.woebin_plot(bin_df)
  29. path = self.data_process_config._get_save_path(f"{prefix}_{k}.png")
  30. plt.savefig(path)
  31. image_path_list.append(path)
  32. return image_path_list
  33. def _f_get_bins_by_breaks(self, data: pd.DataFrame, candidate_dict: Dict[str, CandidateFeatureEntity],
  34. y_column=None):
  35. y_column = self.data_process_config.y_column if y_column is None else y_column
  36. special_values = self.data_process_config.special_values
  37. x_columns_candidate = list(candidate_dict.keys())
  38. breaks_list = {}
  39. for column, candidate in candidate_dict.items():
  40. breaks_list[column] = candidate.breaks_list
  41. bins = sc.woebin(data[x_columns_candidate + [y_column]], y=y_column, breaks_list=breaks_list,
  42. special_values=special_values)
  43. return bins
  44. def _f_corr_filter(self, data: DataSplitEntity, candidate_dict: Dict[str, CandidateFeatureEntity]) -> List[str]:
  45. # 相关性剔除变量
  46. corr_threshold = self.data_process_config.corr_threshold
  47. train_data = data.train_data
  48. x_columns_candidate = list(candidate_dict.keys())
  49. bins = self._f_get_bins_by_breaks(train_data, candidate_dict)
  50. train_woe = sc.woebin_ply(train_data[x_columns_candidate], bins)
  51. corr_df = f_get_corr(train_woe)
  52. corr_dict = corr_df.to_dict()
  53. for column, corr in corr_dict.items():
  54. column = column.replace("_woe", "")
  55. if column not in x_columns_candidate:
  56. continue
  57. for challenger_column, challenger_corr in corr.items():
  58. challenger_column = challenger_column.replace("_woe", "")
  59. if challenger_corr < corr_threshold or column == challenger_column \
  60. or challenger_column not in x_columns_candidate:
  61. continue
  62. iv_max = candidate_dict[column].iv_max
  63. challenger_iv_max = candidate_dict[challenger_column].iv_max
  64. if iv_max > challenger_iv_max:
  65. x_columns_candidate.remove(challenger_column)
  66. else:
  67. x_columns_candidate.remove(column)
  68. break
  69. return x_columns_candidate
  70. def _f_wide_filter(self, data: DataSplitEntity) -> Dict:
  71. # 粗筛变量
  72. train_data = data.train_data
  73. test_data = data.test_data
  74. special_values = self.data_process_config.special_values
  75. y_column = self.data_process_config.y_column
  76. iv_threshold_wide = self.data_process_config.iv_threshold_wide
  77. x_columns_candidate = self.data_process_config.x_columns_candidate
  78. if x_columns_candidate is None or len(x_columns_candidate) == 0:
  79. x_columns_candidate = train_data.columns.tolist()
  80. x_columns_candidate.remove(y_column)
  81. bins_train = sc.woebin(train_data[x_columns_candidate + [y_column]], y=y_column, special_values=special_values,
  82. bin_num_limit=5)
  83. breaks_list = {}
  84. for column, bin in bins_train.items():
  85. breaks_list[column] = list(bin['breaks'])
  86. bins_test = None
  87. if test_data is not None and len(test_data) != 0:
  88. bins_test = sc.woebin(test_data[x_columns_candidate + [y_column]], y=y_column, breaks_list=breaks_list,
  89. special_values=special_values
  90. )
  91. bins_iv_dict = {}
  92. for column, bin_train in bins_train.items():
  93. train_iv = bin_train['total_iv'][0]
  94. test_iv = 0
  95. if bins_test is not None:
  96. bin_test = bins_test[column]
  97. test_iv = bin_test['total_iv'][0]
  98. iv_max = train_iv + test_iv
  99. if train_iv < iv_threshold_wide:
  100. continue
  101. bins_iv_dict[column] = {"iv_max": iv_max, "breaks_list": breaks_list[column]}
  102. return bins_iv_dict
  103. def _f_get_best_bins_numeric(self, data: DataSplitEntity, x_column: str):
  104. # 贪婪搜索【训练集】及【测试集】加起来【iv】值最高的且【单调】的分箱
  105. interval = self.data_process_config.bin_search_interval
  106. iv_threshold = self.data_process_config.iv_threshold
  107. special_values = self.data_process_config.get_special_values(x_column)
  108. y_column = self.data_process_config.y_column
  109. sample_rate = self.data_process_config.sample_rate
  110. def _n0(x):
  111. return sum(x == 0)
  112. def _n1(x):
  113. return sum(x == 1)
  114. def _f_distribute_balls(balls, boxes):
  115. # 计算在 balls - 1 个空位中放入 boxes - 1 个隔板的方法数
  116. total_ways = combinations_with_replacement(range(balls + boxes - 1), boxes - 1)
  117. distribute_list = []
  118. # 遍历所有可能的隔板位置
  119. for combo in total_ways:
  120. # 根据隔板位置分配球
  121. distribution = [0] * boxes
  122. start = 0
  123. for i, divider in enumerate(combo):
  124. distribution[i] = divider - start + 1
  125. start = divider + 1
  126. distribution[-1] = balls - start # 最后一个箱子的球数
  127. # 确保每个箱子至少有一个球
  128. if all(x > 0 for x in distribution):
  129. distribute_list.append(distribution)
  130. return distribute_list
  131. def _get_sv_bins(df, x_column, y_column, special_values):
  132. # special_values_bins
  133. sv_bin_list = []
  134. for special in special_values:
  135. dtm = df[df[x_column] == special]
  136. if len(dtm) != 0:
  137. dtm['bin'] = [str(special)] * len(dtm)
  138. binning = dtm.groupby(['bin'], group_keys=False)[y_column].agg(
  139. [_n0, _n1]).reset_index().rename(columns={'_n0': 'good', '_n1': 'bad'})
  140. binning['is_special_values'] = [True] * len(binning)
  141. sv_bin_list.append(binning)
  142. return sv_bin_list
  143. def _get_bins(df, x_column, y_column, breaks_list):
  144. dtm = pd.DataFrame({'y': df[y_column], 'value': df[x_column]})
  145. bstbrks = [-np.inf] + breaks_list + [np.inf]
  146. labels = ['[{},{})'.format(bstbrks[i], bstbrks[i + 1]) for i in range(len(bstbrks) - 1)]
  147. dtm.loc[:, 'bin'] = pd.cut(dtm['value'], bstbrks, right=False, labels=labels)
  148. dtm['bin'] = dtm['bin'].astype(str)
  149. bins = dtm.groupby(['bin'], group_keys=False)['y'].agg([_n0, _n1]) \
  150. .reset_index().rename(columns={'_n0': 'good', '_n1': 'bad'})
  151. bins['is_special_values'] = [False] * len(bins)
  152. return bins
  153. def _calculation_iv(bins):
  154. bins['count'] = bins['good'] + bins['bad']
  155. bins['badprob'] = bins['bad'] / bins['count']
  156. # 单调性判断
  157. bad_prob = bins[bins['is_special_values'] == False]['badprob'].values.tolist()
  158. if not f_judge_monto(bad_prob):
  159. return -1
  160. # 计算iv
  161. infovalue = pd.DataFrame({'good': bins['good'], 'bad': bins['bad']}) \
  162. .replace(0, 0.9) \
  163. .assign(
  164. DistrBad=lambda x: x.bad / sum(x.bad),
  165. DistrGood=lambda x: x.good / sum(x.good)
  166. ) \
  167. .assign(iv=lambda x: (x.DistrBad - x.DistrGood) * np.log(x.DistrBad / x.DistrGood)) \
  168. .iv
  169. bins['bin_iv'] = infovalue
  170. bins['total_iv'] = bins['bin_iv'].sum()
  171. iv = bins['total_iv'].values[0]
  172. return iv
  173. def _f_sampling(distribute_list: list, sample_rate: float):
  174. # 采样,完全贪婪搜索耗时太长
  175. sampled_list = distribute_list[::int(1 / sample_rate)]
  176. return sampled_list
  177. train_data = data.train_data
  178. train_data_filter = train_data[~train_data[x_column].isin(special_values)]
  179. train_data_filter = train_data_filter.sort_values(by=x_column, ascending=True)
  180. train_data_x = train_data_filter[x_column]
  181. test_data = data.test_data
  182. test_data_filter = None
  183. if test_data is not None and len(test_data) != 0:
  184. test_data_filter = test_data[~test_data[x_column].isin(special_values)]
  185. test_data_filter = test_data_filter.sort_values(by=x_column, ascending=True)
  186. # 构造数据切分点
  187. # 计算 2 - 5 箱的情况
  188. distribute_list = []
  189. points_list = []
  190. for bin_num in list(range(2, 6)):
  191. distribute_list_cache = _f_distribute_balls(int(1 / interval), bin_num)
  192. # 4箱及以上得采样,不然耗时太久
  193. sample_num = 1000 * sample_rate
  194. if sample_rate <= 0.15:
  195. sample_num *= 2
  196. if bin_num == 4 and len(distribute_list_cache) >= sample_num:
  197. distribute_list_cache = _f_sampling(distribute_list_cache, sample_num / len(distribute_list_cache))
  198. sample_num = 4000 * sample_rate
  199. if bin_num == 5 and len(distribute_list_cache) >= sample_num:
  200. distribute_list_cache = _f_sampling(distribute_list_cache, sample_num / len(distribute_list_cache))
  201. distribute_list.extend(distribute_list_cache)
  202. for distribute in distribute_list:
  203. point_list_cache = []
  204. point_percentile_list = [sum(distribute[0:idx + 1]) * interval for idx, _ in enumerate(distribute[0:-1])]
  205. for point_percentile in point_percentile_list:
  206. point = train_data_x.iloc[int(len(train_data_x) * point_percentile)]
  207. if point not in point_list_cache:
  208. point_list_cache.append(point)
  209. if point_list_cache not in points_list:
  210. points_list.append(point_list_cache)
  211. # IV与单调性过滤
  212. iv_max = 0
  213. breaks_list = []
  214. train_sv_bin_list = _get_sv_bins(train_data, x_column, y_column, special_values)
  215. test_sv_bin_list = None
  216. if test_data_filter is not None:
  217. test_sv_bin_list = _get_sv_bins(test_data, x_column, y_column, special_values)
  218. from tqdm import tqdm
  219. for point_list in tqdm(points_list):
  220. train_bins = _get_bins(train_data_filter, x_column, y_column, point_list)
  221. # 与special_values合并计算iv
  222. for sv_bin in train_sv_bin_list:
  223. train_bins = pd.concat((train_bins, sv_bin))
  224. train_iv = _calculation_iv(train_bins)
  225. # 只限制训练集的单调性与iv值大小
  226. if train_iv < iv_threshold:
  227. continue
  228. test_iv = 0
  229. if test_data_filter is not None:
  230. test_bins = _get_bins(test_data_filter, x_column, y_column, point_list)
  231. for sv_bin in test_sv_bin_list:
  232. test_bins = pd.concat((test_bins, sv_bin))
  233. test_iv = _calculation_iv(test_bins)
  234. iv = train_iv + test_iv
  235. if iv > iv_max:
  236. iv_max = iv
  237. breaks_list = point_list
  238. return iv_max, breaks_list
  239. def filter(self, data: DataSplitEntity, *args, **kwargs) -> Dict[str, CandidateFeatureEntity]:
  240. # 粗筛
  241. bins_iv_dict = self._f_wide_filter(data)
  242. x_columns_candidate = list(bins_iv_dict.keys())
  243. candidate_num = self.data_process_config.candidate_num
  244. candidate_dict: Dict[str, CandidateFeatureEntity] = {}
  245. for x_column in x_columns_candidate:
  246. if is_numeric_dtype(data.train_data[x_column]):
  247. iv_max, breaks_list = self._f_get_best_bins_numeric(data, x_column)
  248. candidate_dict[x_column] = CandidateFeatureEntity(x_column, breaks_list, iv_max)
  249. else:
  250. # 字符型暂时用scorecardpy来处理
  251. candidate_dict[x_column] = CandidateFeatureEntity(x_column, bins_iv_dict[x_column]["breaks_list"],
  252. bins_iv_dict[x_column]["iv_max"])
  253. # 相关性进一步剔除变量
  254. x_columns_candidate = self._f_corr_filter(data, candidate_dict)
  255. candidate_list: List[CandidateFeatureEntity] = []
  256. for x_column, v in candidate_dict.items():
  257. if x_column in x_columns_candidate:
  258. candidate_list.append(v)
  259. candidate_list.sort(key=lambda x: x.iv_max, reverse=True)
  260. candidate_list = candidate_list[0:candidate_num]
  261. candidate_dict = {}
  262. for candidate in candidate_list:
  263. candidate_dict[candidate.x_column] = candidate
  264. return candidate_dict
  265. def feature_generate(self, data: DataSplitEntity, candidate_dict: Dict[str, CandidateFeatureEntity], *args,
  266. **kwargs) -> DataPreparedEntity:
  267. train_data = data.train_data
  268. val_data = data.val_data
  269. test_data = data.test_data
  270. y_column = self.data_process_config.y_column
  271. x_columns_candidate = list(candidate_dict.keys())
  272. bins = self._f_get_bins_by_breaks(train_data, candidate_dict)
  273. train_woe = sc.woebin_ply(train_data[x_columns_candidate], bins)
  274. train_data_feature = DataFeatureEntity(pd.concat((train_woe, train_data[y_column]), axis=1),
  275. train_woe.columns.tolist(), y_column)
  276. val_data_feature = None
  277. if val_data is not None and len(val_data) != 0:
  278. val_woe = sc.woebin_ply(val_data[x_columns_candidate], bins)
  279. val_data_feature = DataFeatureEntity(pd.concat((val_woe, val_data[y_column]), axis=1),
  280. train_woe.columns.tolist(), y_column)
  281. test_data_feature = None
  282. if test_data is not None and len(test_data) != 0:
  283. test_woe = sc.woebin_ply(test_data[x_columns_candidate], bins)
  284. test_data_feature = DataFeatureEntity(pd.concat((test_woe, test_data[y_column]), axis=1),
  285. train_woe.columns.tolist(), y_column)
  286. return DataPreparedEntity(train_data_feature, val_data_feature, test_data_feature)
  287. def feature_report(self, data: DataSplitEntity, candidate_dict: Dict[str, CandidateFeatureEntity], *args,
  288. **kwargs) -> Dict[str, MetricFucEntity]:
  289. y_column = self.data_process_config.y_column
  290. x_columns_candidate = list(candidate_dict.keys())
  291. train_data = data.train_data
  292. test_data = data.test_data
  293. metric_value_dict = {}
  294. # 样本分布
  295. metric_value_dict["样本分布"] = MetricFucEntity(table=data.get_distribution(y_column))
  296. # 变量iv及psi
  297. train_bins = self._f_get_bins_by_breaks(train_data, candidate_dict)
  298. train_iv = {key_: [round(value_['total_iv'].max(), 4)] for key_, value_ in train_bins.items()}
  299. train_iv = pd.DataFrame.from_dict(train_iv, orient='index', columns=['IV']).reset_index()
  300. train_iv = train_iv.sort_values('IV', ascending=False).reset_index(drop=True)
  301. train_iv.columns = ['变量', 'IV']
  302. if test_data is not None and len(test_data) != 0:
  303. # 计算psi仅需把y改成识别各自训练集测试集即可
  304. psi_df = pd.concat((train_data, test_data))
  305. psi_df["#target#"] = [1] * len(train_data) + [0] * len(test_data)
  306. psi = self._f_get_bins_by_breaks(psi_df, candidate_dict, y_column="#target#")
  307. psi = {key_: [round(value_['total_iv'].max(), 4)] for key_, value_ in psi.items()}
  308. psi = pd.DataFrame.from_dict(psi, orient='index', columns=['psi']).reset_index()
  309. psi.columns = ['变量', 'psi']
  310. train_iv = pd.merge(train_iv, psi, on="变量", how="left")
  311. # 变量趋势-测试集
  312. test_bins = self._f_get_bins_by_breaks(test_data, candidate_dict)
  313. image_path_list = self._f_save_var_trend(test_bins, x_columns_candidate, "test")
  314. metric_value_dict["变量趋势-测试集"] = MetricFucEntity(image_path=image_path_list, image_size=4)
  315. metric_value_dict["变量iv"] = MetricFucEntity(table=train_iv)
  316. # 变量趋势-训练集
  317. image_path_list = self._f_save_var_trend(train_bins, x_columns_candidate, "train")
  318. metric_value_dict["变量趋势-训练集"] = MetricFucEntity(image_path=image_path_list, image_size=4)
  319. # 变量有效性
  320. train_woe = sc.woebin_ply(train_data[x_columns_candidate], train_bins)
  321. train_corr = f_get_corr(train_woe)
  322. plt.figure(figsize=(12, 12))
  323. sns.heatmap(train_corr, vmax=1, square=True, cmap='RdBu', annot=True)
  324. plt.title('Variables Correlation', fontsize=15)
  325. plt.yticks(rotation=0)
  326. plt.xticks(rotation=90)
  327. path = self.data_process_config._get_save_path(f"var_corr.png")
  328. plt.savefig(path)
  329. metric_value_dict["变量有效性"] = MetricFucEntity(image_path=path)
  330. return metric_value_dict