strategy_norm.py 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215
  1. # -*- coding: utf-8 -*-
  2. """
  3. @author: yq
  4. @time: 2025/4/3
  5. @desc: 值标准化,类似于分箱
  6. """
  7. import os
  8. from typing import Dict, List
  9. import joblib
  10. import pandas as pd
  11. import xgboost as xgb
  12. from pandas.core.dtypes.common import is_numeric_dtype
  13. from commom import GeneralException, f_display_title
  14. from data import DataExplore
  15. from entitys import DataSplitEntity, MetricFucResultEntity
  16. from enums import ResultCodesEnum, ContextEnum, FileEnum
  17. from feature.feature_strategy_base import FeatureStrategyBase
  18. from init import context
  19. from .utils import f_format_value, OneHot, f_format_bin
  20. class StrategyNorm(FeatureStrategyBase):
  21. def __init__(self, *args, **kwargs):
  22. super().__init__(*args, **kwargs)
  23. self.x_columns = None
  24. self.one_hot_encoder_dict: Dict[str, OneHot] = {}
  25. self.points_dict: Dict[str, List[float]] = {}
  26. def _f_fast_filter(self, data: DataSplitEntity) -> List[str]:
  27. y_column = self.ml_config.y_column
  28. x_columns = self.ml_config.x_columns
  29. columns_exclude = self.ml_config.columns_exclude
  30. format_bin = self.ml_config.format_bin
  31. params_xgb = self.ml_config.params_xgb
  32. max_feature_num = self.ml_config.max_feature_num
  33. columns_anns = self.ml_config.columns_anns
  34. train_data = data.train_data.copy()
  35. test_data = data.test_data.copy()
  36. # 特征列配置
  37. if len(x_columns) == 0:
  38. x_columns = train_data.columns.tolist()
  39. if y_column in x_columns:
  40. x_columns.remove(y_column)
  41. for column in columns_exclude:
  42. if column in x_columns:
  43. x_columns.remove(column)
  44. # 简单校验数据类型一致性
  45. check_msg = DataExplore.check_type(data.data[x_columns])
  46. if check_msg != "":
  47. print(f"数据类型分析:\n{check_msg}\n同一变量请保持数据类型一致")
  48. raise GeneralException(ResultCodesEnum.ILLEGAL_PARAMS, message=f"数据类型错误.")
  49. # 数据处理
  50. model_columns = []
  51. num_columns = []
  52. str_columns = []
  53. for x_column in x_columns:
  54. if is_numeric_dtype(train_data[x_column]):
  55. num_columns.append(x_column)
  56. # 粗分箱
  57. if format_bin:
  58. data_x_describe = train_data[x_column].describe(percentiles=[0.1, 0.9])
  59. points = f_format_bin(data_x_describe)
  60. self.points_dict[x_column] = points
  61. train_data[x_column] = train_data[x_column].apply(lambda x: f_format_value(points, x))
  62. test_data[x_column] = test_data[x_column].apply(lambda x: f_format_value(points, x))
  63. else:
  64. str_columns.append(x_column)
  65. one_hot_encoder = OneHot()
  66. one_hot_encoder.fit(data.data, x_column)
  67. one_hot_encoder.encoder(train_data)
  68. one_hot_encoder.encoder(test_data)
  69. model_columns.extend(one_hot_encoder.columns_onehot)
  70. self.one_hot_encoder_dict[x_column] = one_hot_encoder
  71. model_columns.extend(num_columns)
  72. # 重要性剔除弱变量
  73. model = xgb.XGBClassifier(objective=params_xgb.get("objective"),
  74. n_estimators=params_xgb.get("num_boost_round"),
  75. max_depth=params_xgb.get("max_depth"),
  76. learning_rate=params_xgb.get("learning_rate"),
  77. random_state=params_xgb.get("random_state"),
  78. reg_alpha=params_xgb.get("alpha"),
  79. subsample=params_xgb.get("subsample"),
  80. colsample_bytree=params_xgb.get("colsample_bytree"),
  81. importance_type='weight'
  82. )
  83. model.fit(X=train_data[model_columns], y=train_data[y_column],
  84. eval_set=[(train_data[model_columns], train_data[y_column]),
  85. (test_data[model_columns], test_data[y_column])],
  86. eval_metric=params_xgb.get("eval_metric"),
  87. early_stopping_rounds=params_xgb.get("early_stopping_rounds"),
  88. verbose=False,
  89. )
  90. # 重要合并,字符型变量重要性为各one-hot子变量求和
  91. importance = model.feature_importances_
  92. feature = []
  93. importance_weight = []
  94. for x_column in num_columns:
  95. for i, j in zip(model_columns, importance):
  96. if i == x_column:
  97. feature.append(x_column)
  98. importance_weight.append(j)
  99. break
  100. for x_column in str_columns:
  101. feature_cache = 0
  102. for i, j in zip(model_columns, importance):
  103. if i.startswith(f"{x_column}("):
  104. feature_cache += j
  105. feature.append(x_column)
  106. importance_weight.append(feature_cache)
  107. anns = [columns_anns.get(column, "-") for column in feature]
  108. df_importance = pd.DataFrame({'feature': feature, f'importance_weight': importance_weight, "释义": anns})
  109. df_importance.sort_values(by=["importance_weight"], ascending=[False], inplace=True)
  110. df_importance.reset_index(drop=True, inplace=True)
  111. df_importance_rank = df_importance[df_importance["importance_weight"] > 0]
  112. df_importance_rank.reset_index(drop=True, inplace=True)
  113. x_columns_filter = list(df_importance_rank["feature"])[0:max_feature_num]
  114. context.set_filter_info(ContextEnum.FILTER_FAST,
  115. f"筛选前变量数量:{len(x_columns)}\n{x_columns}\n"
  116. f"快速筛选剔除变量数量:{len(x_columns) - len(x_columns_filter)}", detail=df_importance)
  117. context.set(ContextEnum.XGB_COLUMNS_STR, str_columns)
  118. context.set(ContextEnum.XGB_COLUMNS_NUM, num_columns)
  119. return x_columns_filter
  120. def feature_search(self, data: DataSplitEntity, *args, **kwargs):
  121. x_columns = self._f_fast_filter(data)
  122. # 排个序,防止因为顺序原因导致的可能的bug
  123. x_columns.sort()
  124. self.x_columns = x_columns
  125. def variable_analyse(self, *args, **kwargs):
  126. pass
  127. def feature_generate(self, data: pd.DataFrame, *args, **kwargs) -> pd.DataFrame:
  128. df = data.copy()
  129. model_columns = []
  130. for x_column in self.x_columns:
  131. if x_column in self.points_dict.keys():
  132. points = self.points_dict[x_column]
  133. df[x_column] = df[x_column].apply(lambda x: f_format_value(points, x))
  134. model_columns.append(x_column)
  135. elif x_column in self.one_hot_encoder_dict.keys():
  136. one_hot_encoder = self.one_hot_encoder_dict[x_column]
  137. one_hot_encoder.encoder(df)
  138. model_columns.extend(one_hot_encoder.columns_onehot)
  139. else:
  140. model_columns.append(x_column)
  141. return df[model_columns]
  142. def feature_save(self, *args, **kwargs):
  143. if self.x_columns is None:
  144. GeneralException(ResultCodesEnum.NOT_FOUND, message=f"feature不存在")
  145. path = self.ml_config.f_get_save_path(FileEnum.FEATURE_PKL.value)
  146. feature_info = {
  147. "x_columns": self.x_columns,
  148. "one_hot_encoder_dict": self.one_hot_encoder_dict,
  149. "points_dict": self.points_dict,
  150. }
  151. joblib.dump(feature_info, path)
  152. print(f"feature save to【{path}】success. ")
  153. def feature_load(self, path: str, *args, **kwargs):
  154. if os.path.isdir(path):
  155. path = os.path.join(path, FileEnum.FEATURE_PKL.value)
  156. if not os.path.isfile(path) or FileEnum.FEATURE_PKL.value not in path:
  157. raise GeneralException(ResultCodesEnum.NOT_FOUND, message=f"特征信息【{FileEnum.FEATURE_PKL.value}】不存在")
  158. feature_info = joblib.load(path)
  159. self.x_columns = feature_info["x_columns"]
  160. self.one_hot_encoder_dict = feature_info["one_hot_encoder_dict"]
  161. self.points_dict = feature_info["points_dict"]
  162. print(f"feature load from【{path}】success.")
  163. def feature_report(self, data: DataSplitEntity, *args, **kwargs) -> Dict[str, MetricFucResultEntity]:
  164. y_column = self.ml_config.y_column
  165. metric_value_dict = {}
  166. # 样本分布
  167. metric_value_dict["样本分布"] = MetricFucResultEntity(table=data.get_distribution(y_column), table_font_size=10,
  168. table_cell_width=3)
  169. self.jupyter_print(metric_value_dict)
  170. return metric_value_dict
  171. def jupyter_print(self, metric_value_dict, *args, **kwargs):
  172. from IPython import display
  173. max_feature_num = self.ml_config.max_feature_num
  174. f_display_title(display, "样本分布")
  175. display.display(metric_value_dict["样本分布"].table)
  176. filter_fast = context.get(ContextEnum.FILTER_FAST)
  177. f_display_title(display, "快速筛选过程")
  178. print(f"剔除变量重要性排名{max_feature_num}以后的变量")
  179. print(filter_fast.get("overview"))
  180. display.display(filter_fast["detail"])