123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215 |
- # -*- coding: utf-8 -*-
- """
- @author: yq
- @time: 2025/4/3
- @desc: 值标准化,类似于分箱
- """
- import os
- from typing import Dict, List
- import joblib
- import pandas as pd
- import xgboost as xgb
- from pandas.core.dtypes.common import is_numeric_dtype
- from commom import GeneralException, f_display_title
- from data import DataExplore
- from entitys import DataSplitEntity, MetricFucResultEntity
- from enums import ResultCodesEnum, ContextEnum, FileEnum
- from feature.feature_strategy_base import FeatureStrategyBase
- from init import context
- from .utils import f_format_value, OneHot, f_format_bin
- class StrategyNorm(FeatureStrategyBase):
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self.x_columns = None
- self.one_hot_encoder_dict: Dict[str, OneHot] = {}
- self.points_dict: Dict[str, List[float]] = {}
- def _f_fast_filter(self, data: DataSplitEntity) -> List[str]:
- y_column = self.ml_config.y_column
- x_columns = self.ml_config.x_columns
- columns_exclude = self.ml_config.columns_exclude
- format_bin = self.ml_config.format_bin
- params_xgb = self.ml_config.params_xgb
- max_feature_num = self.ml_config.max_feature_num
- columns_anns = self.ml_config.columns_anns
- train_data = data.train_data.copy()
- test_data = data.test_data.copy()
- # 特征列配置
- if len(x_columns) == 0:
- x_columns = train_data.columns.tolist()
- if y_column in x_columns:
- x_columns.remove(y_column)
- for column in columns_exclude:
- if column in x_columns:
- x_columns.remove(column)
- # 简单校验数据类型一致性
- check_msg = DataExplore.check_type(data.data[x_columns])
- if check_msg != "":
- print(f"数据类型分析:\n{check_msg}\n同一变量请保持数据类型一致")
- raise GeneralException(ResultCodesEnum.ILLEGAL_PARAMS, message=f"数据类型错误.")
- # 数据处理
- model_columns = []
- num_columns = []
- str_columns = []
- for x_column in x_columns:
- if is_numeric_dtype(train_data[x_column]):
- num_columns.append(x_column)
- # 粗分箱
- if format_bin:
- data_x_describe = train_data[x_column].describe(percentiles=[0.1, 0.9])
- points = f_format_bin(data_x_describe)
- self.points_dict[x_column] = points
- train_data[x_column] = train_data[x_column].apply(lambda x: f_format_value(points, x))
- test_data[x_column] = test_data[x_column].apply(lambda x: f_format_value(points, x))
- else:
- str_columns.append(x_column)
- one_hot_encoder = OneHot()
- one_hot_encoder.fit(data.data, x_column)
- one_hot_encoder.encoder(train_data)
- one_hot_encoder.encoder(test_data)
- model_columns.extend(one_hot_encoder.columns_onehot)
- self.one_hot_encoder_dict[x_column] = one_hot_encoder
- model_columns.extend(num_columns)
- # 重要性剔除弱变量
- model = xgb.XGBClassifier(objective=params_xgb.get("objective"),
- n_estimators=params_xgb.get("num_boost_round"),
- max_depth=params_xgb.get("max_depth"),
- learning_rate=params_xgb.get("learning_rate"),
- random_state=params_xgb.get("random_state"),
- reg_alpha=params_xgb.get("alpha"),
- subsample=params_xgb.get("subsample"),
- colsample_bytree=params_xgb.get("colsample_bytree"),
- importance_type='weight'
- )
- model.fit(X=train_data[model_columns], y=train_data[y_column],
- eval_set=[(train_data[model_columns], train_data[y_column]),
- (test_data[model_columns], test_data[y_column])],
- eval_metric=params_xgb.get("eval_metric"),
- early_stopping_rounds=params_xgb.get("early_stopping_rounds"),
- verbose=False,
- )
- # 重要合并,字符型变量重要性为各one-hot子变量求和
- importance = model.feature_importances_
- feature = []
- importance_weight = []
- for x_column in num_columns:
- for i, j in zip(model_columns, importance):
- if i == x_column:
- feature.append(x_column)
- importance_weight.append(j)
- break
- for x_column in str_columns:
- feature_cache = 0
- for i, j in zip(model_columns, importance):
- if i.startswith(f"{x_column}("):
- feature_cache += j
- feature.append(x_column)
- importance_weight.append(feature_cache)
- anns = [columns_anns.get(column, "-") for column in feature]
- df_importance = pd.DataFrame({'feature': feature, f'importance_weight': importance_weight, "释义": anns})
- df_importance.sort_values(by=["importance_weight"], ascending=[False], inplace=True)
- df_importance.reset_index(drop=True, inplace=True)
- df_importance_rank = df_importance[df_importance["importance_weight"] > 0]
- df_importance_rank.reset_index(drop=True, inplace=True)
- x_columns_filter = list(df_importance_rank["feature"])[0:max_feature_num]
- context.set_filter_info(ContextEnum.FILTER_FAST,
- f"筛选前变量数量:{len(x_columns)}\n{x_columns}\n"
- f"快速筛选剔除变量数量:{len(x_columns) - len(x_columns_filter)}", detail=df_importance)
- context.set(ContextEnum.XGB_COLUMNS_STR, str_columns)
- context.set(ContextEnum.XGB_COLUMNS_NUM, num_columns)
- return x_columns_filter
- def feature_search(self, data: DataSplitEntity, *args, **kwargs):
- x_columns = self._f_fast_filter(data)
- # 排个序,防止因为顺序原因导致的可能的bug
- x_columns.sort()
- self.x_columns = x_columns
- def variable_analyse(self, *args, **kwargs):
- pass
- def feature_generate(self, data: pd.DataFrame, *args, **kwargs) -> pd.DataFrame:
- df = data.copy()
- model_columns = []
- for x_column in self.x_columns:
- if x_column in self.points_dict.keys():
- points = self.points_dict[x_column]
- df[x_column] = df[x_column].apply(lambda x: f_format_value(points, x))
- model_columns.append(x_column)
- elif x_column in self.one_hot_encoder_dict.keys():
- one_hot_encoder = self.one_hot_encoder_dict[x_column]
- one_hot_encoder.encoder(df)
- model_columns.extend(one_hot_encoder.columns_onehot)
- else:
- model_columns.append(x_column)
- return df[model_columns]
- def feature_save(self, *args, **kwargs):
- if self.x_columns is None:
- GeneralException(ResultCodesEnum.NOT_FOUND, message=f"feature不存在")
- path = self.ml_config.f_get_save_path(FileEnum.FEATURE_PKL.value)
- feature_info = {
- "x_columns": self.x_columns,
- "one_hot_encoder_dict": self.one_hot_encoder_dict,
- "points_dict": self.points_dict,
- }
- joblib.dump(feature_info, path)
- print(f"feature save to【{path}】success. ")
- def feature_load(self, path: str, *args, **kwargs):
- if os.path.isdir(path):
- path = os.path.join(path, FileEnum.FEATURE_PKL.value)
- if not os.path.isfile(path) or FileEnum.FEATURE_PKL.value not in path:
- raise GeneralException(ResultCodesEnum.NOT_FOUND, message=f"特征信息【{FileEnum.FEATURE_PKL.value}】不存在")
- feature_info = joblib.load(path)
- self.x_columns = feature_info["x_columns"]
- self.one_hot_encoder_dict = feature_info["one_hot_encoder_dict"]
- self.points_dict = feature_info["points_dict"]
- print(f"feature load from【{path}】success.")
- def feature_report(self, data: DataSplitEntity, *args, **kwargs) -> Dict[str, MetricFucResultEntity]:
- y_column = self.ml_config.y_column
- metric_value_dict = {}
- # 样本分布
- metric_value_dict["样本分布"] = MetricFucResultEntity(table=data.get_distribution(y_column), table_font_size=10,
- table_cell_width=3)
- self.jupyter_print(metric_value_dict)
- return metric_value_dict
- def jupyter_print(self, metric_value_dict, *args, **kwargs):
- from IPython import display
- max_feature_num = self.ml_config.max_feature_num
- f_display_title(display, "样本分布")
- display.display(metric_value_dict["样本分布"].table)
- filter_fast = context.get(ContextEnum.FILTER_FAST)
- f_display_title(display, "快速筛选过程")
- print(f"剔除变量重要性排名{max_feature_num}以后的变量")
- print(filter_fast.get("overview"))
- display.display(filter_fast["detail"])
|