123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- # -*- coding: utf-8 -*-
- """
- @author: yq
- @time: 2024/11/27
- @desc:
- """
- import time
- from entitys import DataSplitEntity, MlConfigEntity
- from pipeline import Pipeline
- if __name__ == "__main__":
- time_now = time.time()
- import scorecardpy as sc
- # 加载数据
- dat = sc.germancredit()
- dat_columns = dat.columns.tolist()
- dat_columns = [c.replace(".","_") for c in dat_columns]
- dat.columns = dat_columns
- dat["creditability"] = dat["creditability"].apply(lambda x: 1 if x == "bad" else 0)
- # dat["credit_amount_corr1"] = dat["credit_amount"] * 2
- # dat["credit_amount_corr2"] = dat["credit_amount"] * 3
- data = DataSplitEntity(train_data=dat[:709], test_data=dat[709:])
- # 训练并生成报告
- # train_pipeline = Pipeline(MlConfigEntity.from_config('config/demo/ml_config_template.json'), data)
- # 特征处理
- cfg = {
- # 项目名称,影响数据存储位置
- "project_name": "demo",
- # jupyter下输出内容
- "jupyter_print": True,
- # 是否开启粗分箱
- "format_bin": True,
- "max_feature_num": 20,
- # 压力测试
- "stress_test": True,
- # 压力测试抽样次数
- "stress_sample_times": 10,
- # y
- "y_column": "creditability",
- # 参与建模的候选变量
- # "x_columns": [
- # "duration_in_month",
- # "credit_amount",
- # "age_in_years",
- # "purpose",
- # "credit_history",
- # "random",
- # "credit_amount_corr1",
- # "credit_amount_corr2",
- # ],
- # 变量释义
- "columns_anns": {
- "age_in_years": "年龄",
- "credit_history": "借贷历史"
- },
- # 被排除的变量
- "columns_exclude": [],
- # 强制使用的变量
- # "columns_include": ["credit_amount"],
- "model_type": "xgb",
- "feature_strategy": "norm",
- }
- train_pipeline = Pipeline(data=data, **cfg)
- train_pipeline.train()
- train_pipeline.report()
- print(time.time() - time_now)
|