feature_utils.py 1.1 KB

1234567891011121314151617181920212223242526272829303132333435363738394041
  1. # -*- coding:utf-8 -*-
  2. """
  3. @author: yq
  4. @time: 2023/12/28
  5. @desc: 特征工具类
  6. """
  7. import pandas as pd
  8. from sklearn.preprocessing import KBinsDiscretizer
  9. from entitys import DataSplitEntity
  10. def f_get_bins(data: DataSplitEntity, feat: str, strategy: str='quantile', nbins: int=10) -> pd.DataFrame:
  11. # 等频分箱
  12. if strategy == 'quantile':
  13. kbin_encoder = KBinsDiscretizer(n_bins=nbins, encode='ordinal', strategy='quantile')
  14. feature_binned = kbin_encoder.fit_transform(data[feat])
  15. return feature_binned.astype(int).astype(str)
  16. # 等宽分箱
  17. if strategy == 'width':
  18. bin_width = (data[feat].max() - data[feat].min()) / nbins
  19. return pd.cut(data[feat], bins=nbins, labels=[f'Bin_{i}' for i in range(1, nbins + 1)])
  20. def f_get_woe(data: DataSplitEntity) -> pd.DataFrame:
  21. pass
  22. def f_get_iv(data: DataSplitEntity) -> pd.DataFrame:
  23. pass
  24. def f_get_psi(data: DataSplitEntity) -> pd.DataFrame:
  25. pass
  26. def f_get_corr(data: DataSplitEntity) -> pd.DataFrame:
  27. pass
  28. def f_get_ivf(data: DataSplitEntity) -> pd.DataFrame:
  29. pass